
 

Simulink Release Notes

The “Simulink 6.0 Release Notes” on page 1-1 describe the changes 
introduced in the latest version of Simulink. The following topics are 
discussed in these Release Notes.

• “New Features” on page 1-2

• “Major Bug Fixes” on page 1-14

• “Upgrading from an Earlier Release” on page 1-15

• “Known Software and Documentation Problems” on page 1-18

The Simulink Release Notes also provide information about recent 
versions of the product, in case you are upgrading from a version that was 
released prior to Release 13 with Service Pack 1.

• “Simulink 5.1 Release Notes” on page 2-1

• “Simulink 5.0.1 Release Notes” on page 3-1

• “Simulink 5.0 Release Notes” on page 4-1

• “Simulink 4.1 Release Notes” on page 5-1

• “Simulink 4.0 Release Notes” on page 6-1

Printing the Release Notes
If you would like to print the Release Notes, you can link to a PDF version.



 



iii

Contents

1
Simulink 6.0 Release Notes

New Features  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-2
Model Explorer  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-2
Configuration Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-2
Model Referencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-3
Model Workspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-4
Implicit Fixed-Step Solver  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-4
The Signal and Scope Manager  . . . . . . . . . . . . . . . . . . . . . . . . .  1-4
Data Object Type Enhancements . . . . . . . . . . . . . . . . . . . . . . . .  1-4
Block Enhancements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-5
Signal Enhancements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-8
Rate Transition Enhancements  . . . . . . . . . . . . . . . . . . . . . . . . .  1-9
Execution Context Enhancements . . . . . . . . . . . . . . . . . . . . . .  1-10
Algebraic Loop Minimization  . . . . . . . . . . . . . . . . . . . . . . . . . .  1-10
Level-2 M-File S-Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-10
Panning Model Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-10

Model Referencing Limitations  . . . . . . . . . . . . . . . . . . . . . . .  1-11
Referencing and Referenced Model Limitations  . . . . . . . . . . .  1-11
Referencing Model Limitations . . . . . . . . . . . . . . . . . . . . . . . . .  1-11
Referenced Model Limitations  . . . . . . . . . . . . . . . . . . . . . . . . .  1-12

Major Bug Fixes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-14

Upgrading from an Earlier Release . . . . . . . . . . . . . . . . . . . .  1-15
Changes in MATLAB Data Type Conversions . . . . . . . . . . . . .  1-15
Signal Object Resolution Changes  . . . . . . . . . . . . . . . . . . . . . .  1-15
Loading Models Containing Non-ASCII Characters . . . . . . . .  1-16
Change in Sample Time Behavior of Unary Minus Block  . . .  1-16
Initial Output of Conditionally Executed Subsystems  . . . . . .  1-16
Execution Context Default Changes  . . . . . . . . . . . . . . . . . . . .  1-17

Known Software and Documentation Problems  . . . . . . . .  1-18
Turn the New Wrap Lines Option Off  . . . . . . . . . . . . . . . . . . .  1-18
Model Referencing Problems  . . . . . . . . . . . . . . . . . . . . . . . . . .  1-18



iv

Embedded MATLAB Function Block  . . . . . . . . . . . . . . . . . . . .  1-19
Block Positions Limited to Less Than 32768  . . . . . . . . . . . . . .  1-20
Cannot Modify Instantiated Class  . . . . . . . . . . . . . . . . . . . . . .  1-20
Blocksets Menu Sometimes Fails to Appear  . . . . . . . . . . . . . .  1-20
PostSaveFcn Cannot Find Model on First Save . . . . . . . . . . . .  1-21
Saturation Block's Output Differs on Different Platforms  . . .  1-21
Limitation on Discretizing Models in the S Domain  . . . . . . . .  1-21
Finder, Debugger Help Buttons Broken . . . . . . . . . . . . . . . . . .  1-21
Changing a Subsystem Port Number Can Corrupt a Model . .  1-21

2
Simulink 5.1 Release Notes

New Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-2
Sample Time Parameters Exposed . . . . . . . . . . . . . . . . . . . . . . .  2-2
Enhanced Debugger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-2
Context-Sensitive Data Typing of Tunable Parameters  . . . . . .  2-5
Conditional Execution Behavior . . . . . . . . . . . . . . . . . . . . . . . . .  2-7
Function-Call Subsystem Enhancements . . . . . . . . . . . . . . . . . .  2-9
External Increment Option Added To For Iterator Block . . . .  2-10

Performance Improvements  . . . . . . . . . . . . . . . . . . . . . . . . . .  2-11

Major Bug Fixes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-12

Upgrading from an Earlier Release . . . . . . . . . . . . . . . . . . . .  2-13

Known Software and Documentation Problems . . . . . . . . .  2-14
Changing a Subsystem Port Number Can Corrupt a Model . .  2-14
Model File Names Limited to 1280 Characters  . . . . . . . . . . . .  2-14
Compiling Ada S-Functions with GNAT Ada Compiler  . . . . .  2-14
Specifying Include Directories for Building Ada S-Functions .  2-15
Deadzone Block Result Differs in Code Generation . . . . . . . . .  2-15



v

3
Simulink 5.0.1 Release Notes

Major Bug Fixes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-2

Upgrading from an Earlier Release . . . . . . . . . . . . . . . . . . . . .  3-3
Backwards Compatibility of Tunable Parameters for Unified Fixed-Point Blocks  3-3

4
Simulink 5.0 Release Notes

New Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4-2
Block Enhancements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4-2
Simulation Enhancements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4-6
Modeling Enhancements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4-7

Major Bug Fixes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4-10

Platform Limitations for HP and IBM . . . . . . . . . . . . . . . . . .  4-11

Upgrading from an Earlier Release . . . . . . . . . . . . . . . . . . . .  4-12
BlockInstanceData Function Deprecated . . . . . . . . . . . . . . . . .  4-12

5
Simulink 4.1 Release Notes

New Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-2
Simulink Editor  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-2
Modeling Enhancements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-4
Simulink Debugger  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-7
Block Library  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-8

Bug Fixes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-10



vi Contents

Upgrading from an Earlier Release . . . . . . . . . . . . . . . . . . . .  5-12
Running Simulink 4.1 Models in Simulink 4.0  . . . . . . . . . . . .  5-12
Simulink Block Library Reorganization . . . . . . . . . . . . . . . . . .  5-12
Direct Feedthrough Compensation Deprecated . . . . . . . . . . . .  5-12
S-Functions Sorted Like Built-In Blocks  . . . . . . . . . . . . . . . . .  5-13
Added Latched Triggered Subsystems  . . . . . . . . . . . . . . . . . . .  5-13
Self-Triggering Subsystems Are No Longer Allowed . . . . . . . .  5-13
Improved Invalid Model Configuration Diagnostics  . . . . . . . .  5-14

6
Simulink 4.0 Release Notes

New Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6-2
Simulink Editor  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6-2
Modeling Enhancements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6-5
Simulink Debugger  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6-6
Block Library  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6-6
SB2SL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6-9

Upgrading from an Earlier Release . . . . . . . . . . . . . . . . . . . .  6-10
Port Name Property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6-10



 

1
Simulink 6.0 Release 
Notes

New Features    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   1-2

Model Referencing Limitations   .   .   .   .   .   .   .   .   .   .   . 1-11

Major Bug Fixes   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 1-14

Upgrading from an Earlier Release    .   .   .   .   .   .   .   .   . 1-15

Known Software and Documentation Problems  .   .   .   . 1-18



1 Simulink 6.0 Release Notes

1-2

New Features
This section summarizes the changes and enhancements introduced in 
Simulink 6.0. The features and enhancements include:

• “Model Explorer”

• “Configuration Sets”

• “Model Referencing”

• “Model Workspaces”

• “Implicit Fixed-Step Solver”

• “The Signal and Scope Manager”

• “Data Object Type Enhancements”

• “Block Enhancements”

• “Signal Enhancements”

• “Rate Transition Enhancements”

• “Execution Context Enhancements”

• “Algebraic Loop Minimization”

• “Level-2 M-File S-Functions”

• “Panning Model Diagrams”

Model Explorer
The Model Explorer is a new tool that lets you quickly navigate, view, create, 
configure, search, and modify all data and properties of a Simulink model or 
Stateflow chart. See “The Model Explorer” in the online Simulink help for more 
information.

Configuration Sets
This release introduces configuration sets. A configuration set is a named set 
of values for simulation parameters, such as solver type and simulation start 
or stop time. Every new model is created with a configuration set that is 
initialized from a global default configuration set. You can create additional 
configuration sets for a given model and designate any of them as the active set 
with the click of a mouse button. See “Configuration Sets” in the online 
Simulink documentation for more information.



New Features

1-3

Configuration Parameters Dialog Box
This release replaces the Simulation Parameters dialog box with the 
Configuration Parameters dialog box. The Configuration Parameters 
dialog box allows you to set a model’s active configuration parameters. You can 
also use the Model Explorer to set the active configuration parameters as well 
as inactive parameters. See “The Configuration Parameters Dialog Box” for 
more information.

Model Referencing
This release introduces model referencing, a feature that lets a model include 
other models as modular components. You include other models in a model by 
using Model blocks to reference the included models. Like subsystems, model 
referencing allows you to organize large models hierarchically, with Model 
blocks representing major subsystems. However, model referencing has 
significant advantages over subsystems in many applications. The advantages 
include:

• Modular development

You can develop the referenced model independently from the models in 
which it is used.

• Inclusion by reference

You can reference a model multiple times in another model without having 
to make redundant copies. Multiple models can also reference the same 
model.

• Incremental loading

The referenced model is not loaded until it is needed, speeding up model 
loading. 

• Incremental code generation

Simulink and the Real-Time Workshop create binaries to be used in 
simulations and standalone applications to compute the outputs of the 
included blocks. Code generation occurs only for models that have changed.

See “Referencing Models” in the online Simulink documentation for more 
information. For a demonstration of a way to automate conversion of an 
exisiting model’s subsystems to model references, execute mdlref_conversion 
at the MATLAB Command Line. For a summary of limitations on the use of 



1 Simulink 6.0 Release Notes

1-4

model referencing in this release, see “Model Referencing Limitations” on 
page 1-11.

Model Workspaces
In this release, Simulink provides each model with its own workspace for 
storing data. Models can access data in their own workspaces as well as data 
in models that reference them and in the base (i.e., MATLAB) workspace. 
Model workspaces allow you to create data for one model without fear of 
inadvertently altering another model’s data. See “Working with Model 
Workspaces” for more information.

Implicit Fixed-Step Solver
This release includes a new fixed-step solver named ode14x. This is an implicit, 
extrapolating fixed-step solver whose extrapolation order and number of 
Newton's method iterations can be specified via Simulink configuration 
parameters. The ode14x solver is faster than Simulink’s explicit fixed-step 
solvers for certain types of stiff systems that require a very small step size to 
avoid unstable solutions.

The Signal and Scope Manager
The Signal and Scope Manager is a new Simulink feature that enables you to 
globally manage signal generators and viewers. See “The Signal & Scope 
Manager” in the online Simulink help for more information.

Data Object Type Enhancements
This release introduces the following types of objects for specifying the 
properties of model signals and parameters (i.e., model data):

Object Class Purpose

Simulink.AliasType Specify another name for a data type.

Simulink.NumericType Define a custom data type.



New Features

1-5

See “Working with Data Type Objects” and “Data Object Classes” in the 
Simulink online documentation for more information.

This release also adds the following properties to Simulink.Signal class:

• Dimensions
• SampleTime
• SamplingMode
• DataType
• Complexity

Simulink checks the consistency of these properties against the values set on 
the ports/dwork elements associated with each signal object. 

Note  If an attribute is set as auto / -1 (not specified), then no consistency 
checking is done.

Block Enhancements
This release includes the following block-related enhancements.

New Blocks
This release introduces the following blocks.

• The Signal Conversion block enables you to convert virtual buses to 
nonvirtual buses, and vice versa.

• The Environment Controller block’s output depends on whether the model is 
being used for simulation or code generation.

• The Bias block adds a specified bias value to its input and outputs the result.

Simulink.StructType Define a data structure, i.e., a type of signal 
or parameter comprising data of different 
types.

Simulink.Bus Define a signal bus.

Object Class Purpose



1 Simulink 6.0 Release Notes

1-6

• Embedded MATLAB Function block enables you to include MATLAB code in 
models from which you intend to generate code, using the Real-Time 
Workshop.

• The Model block allows you to include other models in a model (see “Model 
Referencing” on page 1-3).

Fixed-Point-Capable Blocks
This release adds fixed-point data capability to many existing Simulink blocks 
and includes fixed-point blocks previously available only with the Fixed-Point 
Blockset. To use the fixed-point data capability of these blocks, you must install 
the Simulink Fixed-Point product on your system. See “Fixed-Point Data” in 
the online Simulink documentation for more information.

Port Values Display
This release of Simulink can display block outputs as data tips on a block 
diagram while a simulation is running. This allows you to observe block 
outputs without having to insert Scope or Display blocks. See “Displaying 
Block Outputs” in the online Simulink documentation for more information.

User-Specifiable Sample Times
This release expands the number of blocks with user-specifiable sample times 
to include most builtin Simulink blocks. In previous releases, most builtin 
blocks inherited their sample times directly or indirectly from the blocks to 
which they were connected. In this release, most blocks continue to inherit 
their sample times by default. However, you can override this default setting 
in most cases to specify a nondefault sample time, using either the block’s 
parameter dialog box or a set_param command. This avoids the need to use 
Signal Specification blocks to introduce nondefault sample times at specific 
points in a model.

Improved Initial Output Handling
In previous Simulink releases, the Constant, Initial Condition, Unit Delay, and 
other blocks write out their initial output values in their mdlStart method. 
This behavior can cause unexpected block output initialization. For example, if 
a Constant block in an enabled subsystemis feeds an Outport block whose IC 
is set to [], the Constant value appears even when the enabled subsystem is 
not enabled.



New Features

1-7

It is desirable in some cases for a block to write its initial output value in its 
mdlStart method. For example, discrete integrator block may need to read the 
value from its external IC port to setting the initial state in mdlInitialize 
method.

This release addresses these problems by implementing a hand-shaking 
mechanism for handling block initial output. Under this mechanism, a block 
only computes its initial output value when it is requested by its downstream 
block. For example, if a Constant block feeds the external IC port of a Discrete 
Integrator block, the discrete integrator block's external IC port requests the 
Constant block to compute its initial output value in its mdlStart method.

Bus-Capable Nonvirtual Blocks
In previous releases, Simulink propagated buses only through virtual blocks, 
such as subsystems. In this release, Simulink also propagates buses through 
the following nonvirtual blocks:

• Memory

• Merge

• Switch

• Multiport Switch

• Rate Transition

• Unit Delay

• Zero-Order Hold

Some of these blocks impose constraints on bus propagation through them. See 
the documentation for the individual blocks for more information.

Duplicate Input Ports
This release allows you to create duplicates of Inport blocks in a model. A model 
can contain any number of duplicates of an original Inport block. The 
duplicates are graphical representations of the original intended to simplify 
block diagrams by eliminating unnecessary lines. The duplicate has the same 
port number, properties, and output as the original. Changing a duplicate’s 
properties changes the original’s properties and vice versa. See the Inport block 
documentation for more information.



1 Simulink 6.0 Release Notes

1-8

Inport/Outport Block Display Options
Inport and Outport blocks can now optionally display their port number, signal 
name, or both the number and the name. See the online documentation for the 
Inport and Outport blocks for more information.

Zero- and One-Based Indexing
In this release, some blocks that use indices provide the option for indices to 
start at 0 or 1. The default is one-based indexing to maintain compatibility with 
previous releases. Blocks that now support zero- or one-based indexing include 

• Selector

• For Iterator

• Assignment

Runtime Block API
This release introduces an application programming interface (API) that 
enables programmatic access to block data, such as block inputs and outputs, 
parameters, states, and work vectors, while a simulation is running. You can 
use this interface to develop MATLAB programs capable of accessing block 
data while a simulation is running or to access the data from the MATLAB 
command line. See “Accessing Block Data During Simulation” for more 
information.

Command-Line API to Signal Builder Block
This release provides a command, signalbuilder, for creating and accessing 
Signal Builder blocks in a model.

Signal Enhancements
This release includes the following signal-related enhancements.

Test Point Indicators
This release can optionally use indicators on a block diagram to indicate 
signals that are test points. See “Test Point Indicators” in the online 
documentation for more information.



New Features

1-9

Edit-Time Signal Label Propagation
In this release, when you change a signal label, Simulink automatically 
propagates the change to all downstream instances of the label. You do not 
have to update the diagram as in previous releases.

Bus Editor
The new Bus Editor enables you to create and modify bus objects in Simulink’s 
base (MATLAB) workspace. See “Bus Editor” for more information.

Rate Transition Enhancements
This release provides the following enhancements to the handling of rate 
transitions in models.

Rate Transition Block Determines Transition Type Automatically
The Rate Transition block now determines the type of transition that occurs 
between the source and destination block (i.e., fast-to-slow or slow-to-fast). 
Therefore, this release eliminates the transition type option on the block’s 
parameter dialog.

Automatic Insertion of Rate Transition Blocks
This release introduces an option to insert hidden rate transition blocks 
automatically between blocks that operate at different rates. This saves you 
from having to insert rate transition blocks manually in order to avoid illegal 
rate transitions. The inserted blocks are configured to ensure that data is 
transferred deterministically and that data integrity is maintained during the 
transfer. See “Fixed-Step Solver Options” in the online Simulink 
documentation for more information.

User-Specifiable Output Sample Time
The Rate Transition Block’s parameter dialog box contains a new parameter: 
Output Port Sample Time. This parameter allows you to specify the output 
rate to which the input rate is converted. If you do not specify a rate, the Rate 
Transition block inherits its output rate from the block to which its output is 
connected.



1 Simulink 6.0 Release Notes

1-10

Execution Context Enhancements
This releases introduces the following enhancements to execution context 
propagation.

Enabling Execution Context Propagation
This release allows you to specify whether to permit execution contexts to be 
propagated across a conditionally executed subsystem’s boundary. See the 
documentation for the Subsystem block for more information.

Execution Context Indicator
This release optionally displays a bar across each input port and output port of 
a subsystem that does not permit propagation of the subsystem’s execution 
context. To enable this option, select Block Displays->Execution context 
indicator from the model editor’s Format menu.

Algebraic Loop Minimization
This release can eliminate some types of algebraic loops involving atomic or 
enabled subsystems or referenced models. See “Eliminating Algebraic Loops” 
in the online Simulink documentation for more information.

Level-2 M-File S-Functions
This release introduces a new application programming interface (API) for 
creating custom Simulink blocks based on M code. In contrast to the previous 
API, designated Level 1, which supported a restricted set of block features, the 
new API, designated Level 2, supports most standard Simulink block features, 
including support for matrix signals and nondouble data types. See “Writing 
Level-2 M-file S-functions” in the online documentation for more information.

Panning Model Diagrams
You can now use the mouse to pan around model diagrams that are too large 
to fit in the model editor’s window. To do this, position the mouse over the 
diagram and hold down the left mouse button and the P or Q key on the 
keyboard. Moving the mouse now pans the model diagram in the editor 
window. 



Model Referencing Limitations

1-11

Model Referencing Limitations
This release imposes some limitations on the use of model referencing. For 
example, in this release, models must meet certain conditons to reference other 
models or be referenced by other models. This release also restricts the use of 
model referencing with some features of Simulink and products based on 
Simulink. This section summarizes some of the major limitations that this 
release places on model referencing. See Simulink-related product information 
for additional information on the limitations summarized here.

Referencing and Referenced Model Limitations
The following limitations apply both to models that reference other models 
(referencing models) and models referenced by other models.

• The simulation start time of both referencing and referenced models must be 
0.

• The model’s inline parameters optimization must be selected. If the 
optimization is off for the top model, this releae displays an error message. If 
it is off for referenced models, this release turns it on while generating model 
reference targets.

• The model must use Simulink.Parameter objects to specify the tunability of 
model parameters. 

This release ignores tunable parameter information specified by the model’s 
Model Parameter Configuration dialog box.  This release provides a utility 
function, tunablevars2parameterobjects, to facilitate conversion of 
parameter tunability information from dialog to Simulink.Parameter object 
form.

Referencing Model Limitations
A model can reference other models if it meets the following conditions:

• The Model Browser does not display Model blocks in its tree view.

Use the Model Explorer to browse models referenced by a model.

• Tools that require access to a model’s internal data or configuration, 
including the Model Coverage Tool, Report Generator, the Simulink and 
Stateflow debuggers, and the Profiler, do not work when invoked from a top 
model on models that the top model references. This is because the 



1 Simulink 6.0 Release Notes

1-12

referenced models appear as black boxes to the top model. For example, you 
cannot use the Simulink Debugger to step from a top model into a referenced 
model.

• You cannot print a referenced model from a top model.

• You can initialize the states of a top model from the workspace only if you 
use structure format or you use array format and the top model does not 
reference any models that have states. You cannot use the workspace to 
initialize the states of models that the top model references.

• To Workspace and Scope blocks in models referenced by a top model do not 
log data when you simulate or run code generated from a top model.

• This release does not let you use signal logging to log, or floating scopes to 
view, the data of Stateflow charts residing in referenced models. 

• An enabled or action subsystem cannot reference a model that uses absolute 
time.

• A continuous sample time cannot be propagated to a Model block that is 
sample-time independent. 

• Linearization is not supported for models containing Model blocks.

• Right clicking on a subsystem to build an S-function from it works for 
subsystems containing Model blocks only if the model is configured to use 
ert.tlc.

Referenced Model Limitations
A model can be referenced by other models if it meets the following conditions:

• The model must use a fixed-step solver (see “Choosing a Fixed-Step Solver” 
on page 10-8).

• The model must specify that it can be referenced (see “Total number of 
instances allowed per top model” on page 10-69).

• You cannot initialize the states of a referenced model.

• This release places some restrictions on the sample times that a referenced 
model can inherit from the model that references it. See “Model Block 
Sample Times” in the Simulink documentation for more information.

• This release places some limitations on I/O connections in referenced models.

• A referenced model must use Simulink.Bus objects to specify any nonvirtual 
buses that it inputs and outputs (see “Bus I/O Limitations”).



Model Referencing Limitations

1-13

• A referenced model can input or output only those user-defined data types 
that are fixed-point or defined by Simulink.DataType or Simulink.Bus 
objects.

• Function-Call, Data Store Memory, Goto/From blocks cannot cross model 
reference boundaries.

• A referenced model cannot contain noninlined S-functions.

• This release ignores custom code settings in the Configuration Parameter 
dialog box and custom code blocks when generating the simulation target for 
a referenced model.

• This release does not include Stateflow target custom code in simulation 
targets generated for referenced models. 

• This release does not support referenced models that have asynchronous 
rates.

• A referenced model can input or output indices. However, Simulink may not 
be able to detect a 0-based index that is connected to a model port expecting 
or outputting a 1-based index, or vice versa. See "Index I/O Limitations" in 
the Simulink documentation for more information.

• Model blocks referencing models that contain assignment blocks that are not 
in an iterator subsystem, cannot be placed in an iterator subsystems.

• The Real-Time Workshop’s S-function target and grt_malloc-based target do 
not support model reference.

• When generating a simulation target for a referenced model that contains an 
S-function with a TLC file, Simulink inlines the S-function only if the 
S-function sets the SS_OPTION_USE_TLC_WITH_ACCELERATOR flag.

• This release places some restrictions on the use of custom storage classes in 
referenced models. See The Real-Time Workshop documentation for details.



1 Simulink 6.0 Release Notes

1-14

Major Bug Fixes
Simulink 6.0 includes several bug fixes made since Version 5.1. This section 
describes the particularly important Version 6.0 bug fixes.

If you are viewing these Release Notes in PDF form, please refer to the HTML 
form of the Release Notes, using either the Help browser or the MathWorks 
Web site and use the link provided.

If you are upgrading from a version of Simulink earlier than Version 5.1, you 
should also see the Major Bug Fixes summary for Simulink 5.1.



Upgrading from an Earlier Release

1-15

Upgrading from an Earlier Release

Note  If you are upgrading from Version 5.0 or earlier, then you should see 
“Upgrading from an Earlier Release” on page 3-3 in the Simulink 5.0.1 
Release Notes.

Changes in MATLAB Data Type Conversions
Release 14 introduces changes in the way MATLAB handles conversions from 
double to standard MATLAB nondouble data types (e.g., int8, uint8, etc.) and 
from one nondouble data type to another. Previous releases of MATLAB use 
truncation to convert a floating point value to an integer value, e.g., int8(1.7) 
= 1. Release 14 uses rounding, e.g., int8(1.7) = 2. See “New Nondouble 
Mathematics Features” in the Release 14 MATLAB Release Notes for a 
complete description of the changes in data type conversion algorithms 
introduced in Release 14. 

Such changes could affect the behavior of models that rely on nondouble data 
type conversions of signals and block parameters. For example, a Gain 
parameter entered as int8(3.7) ends up as 4 in this release as opposed to 3 in 
previous releases and this difference could change the simulation results. 
Therefore, if the simulation results for your model differ in Release 14 from 
previous releases, you should investigate whether the differences result from 
the changes in data type conversion algorithms, and, if so, modify your model 
accordingly.

Signal Object Resolution Changes
In previous releases, Simulink attempted to resolve every named signal to a 
Simulink.Signal object of the same name in the MATLAB workspace. In this 
release, Simulink lets you specify whether a named signal or discrete state 
should resolve to a signal object, using the Signal Properties dialog box and 
the State Properties of blocks that have discrete states, such as the 
Discrete-Time Integrator. By default, Simulink attempts to resolve every 
named signal or state to a signal object regardless of whether the model 
specifies that the signal or state should resolve to a signal object. If the model 
does not specify resolution for a signal or state and it does resolve, Simulink 
displays a warning. You can also specify that Simulink attempt to resolve all 



1 Simulink 6.0 Release Notes

1-16

named signals or states without warning of implicit resolutions (the behavior 
in previous releases) or that it only resolve signals and states that the model 
specifies should resolve (explicit resolution).

Explicit signal resolution is the recommended approach for doing signal 
resolution as it ensures that signals that should be resolved are resolved and 
signals that should not resolve are not resolved. This release includes a script 
that facilitates converting models that use implicit signal resolution to use 
explicit resolution. Enter help disableimplicitsignalresolution at the 
MATLAB command line for more information.

Loading Models Containing Non-ASCII Characters
Release 14 of MATLAB introduces Unicode support.  This enhancement allows 
MATLAB and Simulink to support character sets from different encoding 
systems. However, this change causes Simulink to behave differently from 
previous releases when loading a model containg non-ASCII characters.  
Previous releases load such models regardless of whether the non-ASCII 
characters are compatible with the current encoding system used by MATLAB. 
In Release 14, Simulink checks the characters in the model against the current 
encoding setting of MATLAB.  If they are incompatible, Simulink does not load 
the model.  Instead, it displays an error message that prompts you to change to 
a compatible MATLAB encoding setting, using the slCharacterEncoding 
command.

Change in Sample Time Behavior of Unary Minus 
Block
Release 14 changes the sample time behavior of the Unary Minus block. In 
Release 13, if the sample time of this block’s input is continuous, the sample 
time of the block and its output is fixed in minor time step. this block is fixed 
in minor step and the output signal is fixed in minor step when the input is a 
continous sample time signal. In Release 14, if the input is continuous, the 
block and output sample time are continuous also.

Initial Output of Conditionally Executed Subsystems
In previous releases, if the Initial output parameter of an Outport block in a 
conditionally executed subsystem specified [] as the initial output, the initial 
output of this port was the initial output of the block driving the Outport block. 



Upgrading from an Earlier Release

1-17

In this release, the initial output is undefined if the Initial output port 
specifies [].

Execution Context Default Changes
In R13 sp1 and DACORE2, execution contexts propagate across conditionally 
executed subsystem boundaries by default. In R14, execution context 
propagation does not cross a conditionally executed subsystem boundaries by 
default. You need to choose the Propagate execution context across 
subsystem boundary option in the subsystem's parameter dialog box.



1 Simulink 6.0 Release Notes

1-18

Known Software and Documentation Problems
The following known problems occur in Version 6.0.

Turn the New Wrap Lines Option Off
The MATLAB Command Window has a new Wrap lines option. Many 
Simulink error messages are very long. This can cause some display problems. 
Therefore, when using Simulink, you should turn the Wrap lines option off 
using the Preferences setting. For more information on this issue, see the 
Technical Support Solution 29082 from the MathWorks Web page.

Model Referencing Problems
Model referencing has the following known problems in this release.

Logged Signals May Be Sampled at Too Fast a Rate
Simulink logs signals nested below the top level in a model reference hierarchy 
at the fastest rate of the top-level referenced model, regardless of the actual 
sample times of the logged signals. For example, suppose that model A 
references model B, which references model C. Further, suppose that you have 
specified that Simulink log signal s in model C, where the sample time of s is 
0.2 seconds. Finally, suppose that signals in model B run at either a 0.1- or 
0.2-second sample time. In this case, Simulink logs model B’s signals at the 
correct rates but it logs s at a sample time of 0.1 seconds, although s changes 
every 0.2 seconds. A workaround for this problem is to specify decimation 
factors for signals that are logged too frequently. For example, in the case of s, 
a decimation factor of 2 would result in s being logged only at the correct 
sample times.

Viewed Signals May Be Sampled at Too Fast a Rate
A Scope viewer (created with the Signal & Scope Manager) in a top model 
displaying signals in a referenced model executes at a rate that is equal to or 
faster than the sample rate of the top-level Model block that directly or 
indirectly references the model containing the signal being displayed.  This 
rate may be faster than the actual rate of the signal being displayed.  A 
workaround for this problem is to specify a decimation factor in the Scope 
viewer.



Known Software and Documentation Problems

1-19

Referenced Model Names Case-Insensitive on Unix
On Unix, when building targets for referenced models, Simulink does not 
distinguish between models whose names differ only in case. This can lead to 
unpredictable simulation results if the MATLAB path contains models whose 
names differ only in case. The workaround is to ensure that this condition does 
not occur when updating or simulating a model containing model references.

Inconsistent Signal Logging Tunability
You can tune the decimation and max points properties of a signal in a 
referenced model, using MATLAB variables, only if the referenced model is 
open. If the referenced model is closed, the values of those properties are the 
values of the MATLAB variables that specify them when the model was last 
saved. To avoid this difference in behavior between when the refenced model is 
closed and when it is opened, you should not use MATLAB variables to tune 
the decimation and max points properties of signals in referenced models.

R14LCS and R14FCS Project Directories Are Incompatible
This release does not support model referencing project directories (slprj) 
created by R14LCS. If you try to update or simulate a model created by 
R14LCS and that model references other models, Simulink displays a dialog 
that gives you the choice of removing the old project directory and continuing 
or aborting the model update or simulation.

Embedded MATLAB Function Block
The Embedded Matlab Function block has the following known problems in 
this release.

Local and Constant Scope Disabled
The Model Explorer lets you assign a scope of Local or Constant to Embedded 
MATLAB Function block variables. However, you cannot simulate or generate 
Real-Time Workshop code from models that assign these scopes to such 
variables. Attempting to do so results in an error. Future versions of Simulink 
will not allow you to assign these scopes to Embedded MATLAB Function block 
variables.



1 Simulink 6.0 Release Notes

1-20

Embedded MATLAB Function Block Stateflow Dependencies
The new Embedded MATLAB Function block uses the same code-generation 
infrastructure as Stateflow for simulation and debugging. The Simulink user 
interface reflects this dependency in the following ways.

• Some of the compile-time warnings and run-time errors from this block may 
mention "Stateflow" as the source of these warnings and errors.

• The Model Explorer uses the same icon for library links to Embedded 
MATLAB Function blocks as it does for library links to Stateflow charts.

The dependency of the Embedded MATLAB Function block on the Stateflow 
code-generation infrastructure has significant ramifications for Stateflow and 
Real-Time Workshop users as well. See “Embedded MATLAB Function Block 
Stateflow Dependencies” in the Stateflow release notes for details.

Note  You do not need a Stateflow license to use Embedded MATLAB 
Function blocks in a model.

Block Positions Limited to Less Than 32768
Block positions have been restricted to be less than 32768. You can probably 
only reach this limit by using ADD_BLOCK to automatically generate 
extremely large models. Workarounds include shrinking the size of your 
blocks, or rearranging the blocks to fit the available space. 

Cannot Modify Instantiated Class
The Simulink Data Class Designer prevents you from modifying classes if they 
have already been instantiated during the current MATLAB session.

Blocksets Menu Sometimes Fails to Appear
The Blocksets menu sometimes fails to appear when selected from the model 
window's Help menu. If this happens, click anywhere in the model window and 
then select Blocksets from the Help menu.



Known Software and Documentation Problems

1-21

PostSaveFcn Cannot Find Model on First Save
The first time you save a new model that has PostSaveFcn functions, the 
PostSaveFcn functions cannot find the model.

Saturation Block's Output Differs on Different 
Platforms
On Linux, the Saturation block outputs NaN if its input is NaN; on Windows, the block 
outputs its lower limit if its input is NaN.

Limitation on Discretizing Models in the S Domain
When discretizing a model in the S domain, you cannot specify a sample time 
of 0 if the model contains a Transfer Function, State Space, or Zero Pole block. 
If you do specify a sample time of 0 during the discretization process, Simulink 
signals an error.

Finder, Debugger Help Buttons Broken
Clicking the Help button on the dialog boxes of the Finder and Simulink 
Debugger causes the Help Browser to display a “documentation not found” 
message. However, the documentation for both dialog boxes exists.

• See “The Finder” for information on the Finder. 

• See “Simulink Debugger” for information on the Simulink Debugger.

Changing a Subsystem Port Number Can Corrupt a 
Model 
In this release as in previous releases, changing the number of an input or 
output port number in a subsystem can cause an extra port to be added to the 
subsystem block in the parent system.

To fix the problem:

1 Copy the contents of the subsystem to the clipboard. 

2 Delete the old subsystem block.

3 Create a new subsystem block in its place.



1 Simulink 6.0 Release Notes

1-22

4 Copy the old subsystem contents from the clipboard into the new subsystem.

5 Reconnect the subsystem.



 

2
Simulink 5.1 Release 
Notes

New Features    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   1-2
Sample Time Parameters Exposed    .   .   .   .   .   .   .   .   .   .   .   1-2
Enhanced Debugger    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   1-2
Context-Sensitive Data Typing of Tunable Parameters   .   .   .   1-5
Conditional Execution Behavior    .   .   .   .   .   .   .   .   .   .   .   .   1-7
Function-Call Subsystem Enhancements  .   .   .   .   .   .   .   .   .   1-9
External Increment Option Added To For Iterator Block    .   . 1-10

Performance Improvements .   .   .   .   .   .   .   .   .   .   .   .   . 1-11

Major Bug Fixes   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 1-12

Upgrading from an Earlier Release    .   .   .   .   .   .   .   .   . 1-13

Known Software and Documentation Problems  .   .   .   . 1-14
Changing a Subsystem Port Number Can Corrupt a Model    . 1-14
Model File Names Limited to 1280 Characters .   .   .   .   .   .   . 1-14
Unable to Compile Ada S-Functions with GNAT Ada 

Compiler More Recent Than Version 3.13p .   .   .   .   .   . 1-14
Unable to Specify Additional include Directories When 

Building Ada S-Functions .   .   .   .   .   .   .   .   .   .   .   .   . 1-15
Deadzone Block Outputs Different Result in Simulation 

and Code Generation .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 1-15



2 Simulink 5.1 Release Notes

2-2

New Features
This section summarizes changes and enhancements introduced in Simulink 
5.1. Those features are

• “Sample Time Parameters Exposed” (see below)

• “Enhanced Debugger” (see below)

• “Context-Sensitive Data Typing of Tunable Parameters” on page 2-5

• “Conditional Execution Behavior” on page 2-7

• “Function-Call Subsystem Enhancements” on page 2-9

• “External Increment Option Added To For Iterator Block” on page 2-10

Sample Time Parameters Exposed
Sample time parameters of most Simulink built-in library blocks have been 
exposed to the user. That is, the sample time parameter of these blocks has 
been made accessible via the block's dialog box or set_param. This means that 
most nonvirtual blocks in the Simulink library have a user settable sample 
time parameter. Prior to this exposure, these blocks had an internal inherited 
sample time with the exception of the Constant block, which had a constant 
(inf) sample time. By providing access to the sample time parameter, you no 
longer need to use the Signal Specification block to apply a nondefault sample 
times to these blocks. 

Enhanced Debugger
This release includes enhancements to the Simulink debugger that enable you 
to step through a simulation showing information not visible in previous 
releases. The enhancements include

• An expanded command set that now enables you to step a simulation method 
by method. Previous releases showed only output methods.

• An expanded toolbar that gives you push button access to new debugger 
commands

• A Simulation Loop pane that shows the current state of the simulation at a 
glance



New Features

2-3

Note  Methods are functions that Simulink uses to solve a model at each time 
step during the simulation. Blocks are made up of multiple methods. “Block 
execution” in this documentation is shorthand notation for “block methods 
execution.” Block diagram execution is a multi-step operation that requires 
execution of the different block methods in all the blocks in a diagram at 
various points during the process of solving a model at each time step during 
simulation, as specified by the simulation loop.

These changes allow you to pinpoint problems in your model with greater 
accuracy. The following sections briefly describe the debugger enhancements. 
See the Simulink documentation for a detailed description of the new features 
and their usage.

Enhanced Debugger Commands
This release enhances the following debugger commands:

• step

In previous releases, this command advanced the simulation from the 
current block Outputs method over any intervening methods to the next 
block Outputs method. In this release, step advances the simulation method 
by method, or into, over, or out of methods, from the first method executed 
during the simulation to the last. This allows you to determine the result of 
executing any model, subsystem, or block method executed during the 
simulation, including block Outputs, Update, and Derivative methods as 
well as solver methods.

• next

In previous releases, this command advanced the simulation to the first 
block Outputs method executed during the next time step. In this release, it 
advances the simulation over the next method to be executed, executing any 
methods invoked by the next method.

• break

In previous releases, this command set a breakpoint at the Outputs method 
of a specified block. In the current release, it sets a breakpoint at any 
specified method or on all the methods of a specified block.



2 Simulink 5.1 Release Notes

2-4

• bafter

In previous releases, this command set a breakpoint after the Outputs 
method of a specified block. In this release, it sets a breakpoint after a 
specified method or after each of the methods of a specified block.

• minor

In previous releases, this command enabled or disabled stepping across 
Outputs methods in minor time steps. In the current release, it enables or 
disables in minor time steps breakpoints set by block for all methods.

New Debugger Commands
This release introduces the following debugger commands:

• elist

Displays the method execution lists for the root system and the nonvirtual 
subsystems of the model being debugged.

• etrace

Causes the debugger to display a message in the MATLAB Command 
Window every time a method is entered or exited while the simulation is 
running.

• where

Displays the call stack of the method at which the simulation is currently 
suspended.

Enhanced Debugger Toolbar
The debugger toolbar has been expanded to include buttons for the following 
versions of the step command: step into, step over, step out, and step top.

Simulation Loop Pane
This release adds a Simulation Loop pane to the debugger GUI that displays 
by method the point in the simulation loop at which the simulation is currently 
suspended. The debugger updates the pane after each step, next, or continue 
command, enabling you to determine at a glance the point to which the 
command advanced the simulation. The pane also allows you to set 
breakpoints on simulation loop methods and to navigate to the block at whose 
method the simulation is currently suspended.



New Features

2-5

Sorted List Pane
This release renames the Block Execution List pane of the debugger GUI to 
the Sorted List pane to reflect more accurately what the pane contains. The 
Sorted List pane displays for the root system and each nonvirtual subsystem of 
the model being debugged a sorted list of the subsystem’s blocks. The sorted 
lists enable you to determine the block IDs of a model’s blocks.

Context-Sensitive Data Typing of Tunable 
Parameters
In this release, if a model’s Inline parameters setting is selected, Simulink 
regards the data type of a tunable parameter as context-sensitive if the data 
type is not specified. In particular, this release allows the block that uses the 
parameter to determine the parameter’s data type. By contrast, Release 13 
regards the type of the parameter to be double regardless of where it is used.

Change in Simulink Behavior
This change affects the behavior of Simulink in two cases. First, in Release 13, 
if a tunable parameter’s data type is unspecified and a block that uses it needs 
to convert its type from double to another type, Simulink by default stops and 
displays an error message when you update or simulate the model. The error 
alerts the user to the fact that the type conversion is a downcast and hence 
could result in a loss of precision. In this release, by contrast, a typecast never 
occurs because the block itself determines the appropriate type for the 
parameter. Hence, in this release, Simulink never generates a downcast error 
for tunable parameters of unspecified data type.

The following model illustrates the difference in behavior between this release 
and Release 13 in this case.

Assume that the model’s Inline parameters setting is selected (thereby 
making parameters nontunable by default) and the model declares k as a 
tunable parameter on the Model Configuration Parameters dialog box. Also 



2 Simulink 5.1 Release Notes

2-6

assume that the user has specified the value of k on the MATLAB command 
line as follows:

>> k = 5.7

In other words, the user has specified a value for k but not a data type. In this 
case, this release regards the type of k to be int16, the type required by the 
Gain block to compute its output. By contrast, Release 13 regards the type of k 
to be double and hence assumes that the Gain block must downcast k to 
compute its output. Release 13 therefore stops and displays an error message 
by default in this case when you update or simulate the model.

The behavior of this release also differs from Release 13 in the case where a 
model uses a tunable parameter of unspecified data type in more than one 
place in the model and the required data type differs in different places. This 
case creates a conflict under the assumption that the block in which the 
parameter is used determines the parameter’s data type. This assumption 
requires Simulink to assign different data types to the same parameter, which 
is impossible. Therefore, in this release, Simulink signals an error to alert the 
user to the conflict. By contrast, in Release 13, Simulink does not throw an 
error because the data type of the parameter is double regardless of where it 
is used. You can avoid the conflicting data types error in Release 13SP1 by 
specifying the tunable parameter’s data type.

The following model illustrates this change in behavior.

The two Gain blocks in this model both use k, a tunable parameter of 
unspecified type, as their gain parameter. Computing the outputs of the blocks 
requires that the gain parameter be of types int16 and int32, respectively. In 
Release 13, Simulink regards the data type of k to be double and the Gain 



New Features

2-7

blocks use typecasts to convert k to the required type in each case. Simulink 
simulates the model without error (if the parameter downcasting diagnostic is 
set to none or warning). By contrast, this release signals an error because this 
model requires k to be both type int16 and int32, an impossibility. You can 
avoid this error by explicitly specifying k’s data type; for example:

k = int16(6);

Conditional Execution Behavior
This release augments the conditional input branch behavior of the previous 
release with a more generalized behavior called conditional execution (CE) 
behavior. The new behavior speeds simulation of models by eliminating 
unnecessary execution of blocks connected to Switch, Multiport Switch, and 
conditionally executed blocks.

Note  The Simulink documentation has not yet been updated to reflect the 
new behavior. Consequently, the remainder of this release note provides a 
detailed explanation of how the behavior works.

As with the conditional input branch behavior available in the previous 
release, the new behavior ensures that the block methods that make up an 
input branch of a Switch or Multiport Switch block execute only when the 
model selects the corresponding switch input. In addition, the new behavior 
option generalizes this behavior to conditionally executed subsystems. 
Consider, for example, the following model.



2 Simulink 5.1 Release Notes

2-8

Simulink computes the outputs of the Constant block and Gain Block only 
when the Enabled Subsystem executes (i.e., at time steps 0, 4, 8, and so on). 
This is because the output of the Constant block is required and the input of 
the Gain block changes only when the Enabled Subsystem executes. When CE 
behavior is off, Simulink computes the outputs of the Constant and Gain blocks 
at every time step, regardless of whether the outputs are needed or change.

In this example, Simulink regards the Enabled Subsystem as defining an 
execution context for the Constant and Gain blocks. Although the blocks reside 
in the model’s root system, their block methods are executed as if the blocks 
reside in the Enabled Subsystem. 

In general, Simulink defines an execution context as a set of blocks to be 
executed as a unit. At model compilation time, Simulink associates an 
execution context with the model’s root system and with each of its nonvirtual 
subsystems. Initially, the execution context of the root system and each 
nonvirtual subsystem is simply the blocks that it contains. Simulink examines 
whether a block’s output is required only by a conditionally executed 
subsystem or whether the block’s input changes only as a result of the 
execution of a conditionally executed subsystem. If so, Simulink moves the 
block into the execution context of the conditionally executed system. This 
ensures that the block methods are executed during the simulation loop only 
when the corresponding conditionally executed subsystem executes.

Note  This behavior treats the input branches of a Switch or Multiport Switch 
block as invisible, conditionally executed subsystems, each of which has its 
own execution context that is enabled only when the switch’s control input 
selects the corresponding data input. As a result, switch branches execute 
only when selected by switch control inputs.

To determine the execution context to which a block belongs, select Sorted 
order from the model window’s Format menu. Simulink displays the sorted 
order index for each block in the model in the upper right corner of its icon. The 
index has the format s:b, where s specifies the subsystem to whose execution 
context the block, b, belongs.



New Features

2-9

Simulink also expands the sorted order index of conditionally executed 
subsystems to include the system ID of the subsystem itself in curly brackets 
as illustrated in the following figure.

In this example, the sorted order index of the enabled subsystem is 0:1{1}. The 
0 indicates that the enable subsystem resides in the model’s root system. The 
first 1 indicates that the enabled subsystem is the second block on the root 
system’s sorted list (zero-based indexing). The 1 in curly brackets indicates 
that the system index of the enabled subsystem itself is 1. Thus any block 
whose system index is 1 belongs to the execution context of the enabled 
subsystem and hence executes when it does. For example, the constant block’s 
index, 1:0, indicates that it is the first block on the sorted list of the enabled 
subsystem, even though it resides in the root system.

Function-Call Subsystem Enhancements
This releases adds the following function-call subsystem-related parameters to 
the Trigger block:

• The States when enabling parameter specifies whether a function-call 
enable trigger causes Simulink to reset the states of the subsystem 
containing this Trigger block to their initial values.

• The Sample time type parameter specifies whether the function-call 
subsystem containing the Trigger block is invoked periodically.

• The Sample time parameter species the rate at which the function-call 
subsystem containing the Trigger block is invoked.

See the Trigger block documentation for additional information.



2 Simulink 5.1 Release Notes

2-10

External Increment Option Added To For Iterator 
Block
This release adds an external increment option to the For Iterator block. 
Selecting this option causes the block to display an input port for the external 
increment. The value of this input port at the current time step is used as the 
value of the block’s iteration variable at the next iteration. You can select this 
option by checking the Set next i (iteration variable) externally option on the 
block’s parameter dialog box or by setting its ExternalIncrement parameter to 
'on'. See the documentation for the For Iterator block for more information.

Note  This enhancement is not backward compatible with R13. Loading 
models containing For Iterator blocks with this option selected in R13 
produces a warning message. Simulating such models in R13 can produce 
incorrect results.



Performance Improvements

2-11

Performance Improvements
Release R13SP1 includes many performance improvements that were designed 
to particularly benefit large models (containing on the order of 100,000 blocks 
and/or more than a few megabytes of parameter data). Speed has been 
improved and memory consumption reduced for model loading, compilation, 
code generation, and closing. The various improvements span the Simulink, 
Stateflow, and Real-Time Workshop products and include:

• Increased speed and decreased memory consumption through improved 
incremental loading of library blocks that contain Stateflow blocks.

• Increased speed and decreased memory usage through the introduction of a 
redesigned Signal Specification block. Models saved with the old version of 
the Signal Specification block should automatically start using the new block 
when you load the model with this release.

• Increased speed in datatype and sample time propagation during the 
compile phase of certain models.

• Increased speed in the Stateflow build process for both simulation and 
Real-Time Workshop targets.

• Increased speed and decreased memory consumption when using N-D 
Lookup Table blocks that utilize large parameter data.

• Increased speed and decreased memory usage when generating code with 
Real-Time Workshop or the Simulink Accelerator for models with large 
parameter sets. This improvement involves writing out parameter 
references instead of the entire parameter data into the RTW file for 
parameters whose size exceeds 10 elements. The parameter values for such 
references are retrieved directly from Simulink during the code generation 
process.

• Decreased memory usage during various phases of code generation process 
in Real-Time Workshop or the Simulink Accelerator.

• Improved speed during model close through streamlining of the close 
process.

Other minor improvements have also been made to improve performance. Your 
models should experience corresponding speed and memory improvements, to 
the extent that these changes apply to your specific models and usage 
scenarios.



2 Simulink 5.1 Release Notes

2-12

Major Bug Fixes
Simulink 5.1 includes several bug fixes made since Version 5.0.1. This section 
describes the particularly important Version 5.1 bug fixes.

If you are viewing these Release Notes in PDF form, please refer to the HTML 
form of the Release Notes, using either the Help browser or the MathWorks 
Web site and use the link provided.



Upgrading from an Earlier Release

2-13

Upgrading from an Earlier Release

Note  If you are upgrading from a version earlier than 5.0.1 (or 5.0.2, which 
did not significantly differ from 5.0.1), then you should see “Upgrading from 
an Earlier Release” on page 2-3 in the Simulink 5.0.1 Release Notes.



2 Simulink 5.1 Release Notes

2-14

Known Software and Documentation Problems
This section describes known software problems in Version 5.1.

If you are viewing these Release Notes in PDF form, please refer to the HTML 
form of the Release Notes, using either the Help browser or the MathWorks 
Web site and use the link provided.

Changing a Subsystem Port Number Can Corrupt a 
Model 
Changing the number of an input or output port number in a subsystem can 
cause an extra port to be added to the subsystem block in the parent system.

To fix the problem,

1 Copy the contents of the subsystem to the clipboard. 

2 Delete the old subsystem block.

3 Create a new subsystem block in its place.

4 Copy the old subsystem contents from the clipboard into the new subsystem.

5 Reconnect the subsystem.

Model File Names Limited to 1280 Characters
Model file names, including their complete path names, are limited to a 
maximum length of 1280 characters. Unpredictable results, up to and 
including model file corruption, can occur if the name is longer than this limit.

Compiling Ada S-Functions with GNAT Ada 
Compiler
In this release, you cannot compile Ada S-Functions with a version of the 
GNAT Ada Compiler more recent than Version 3.13p. Please follow the 
instructions in Solution Number 34793 and download the fix. 

http://www.mathworks.com/support/solutions/data/34793.shtml



Known Software and Documentation Problems

2-15

Specifying Include Directories for Building Ada 
S-Functions
In this release, the command 

mex -ada -I ./foo adasfcn.ads 

ignores the -I ./foo switch that specifies addition directories to look for 
source/include files. Please follow the instruction in Solution number 34790 to 
work around this limitation. 

http://www.mathworks.com/support/solutions/data/34790.shtml

Deadzone Block Result Differs in Code Generation
In simulation, the Deadzone block outputs NaN when input is NaN while it 
outputs 0 in Real-Time Workshop code generation. This bug is planned to be 
fixed in a future release.



2 Simulink 5.1 Release Notes

2-16



 

3
Simulink 5.0.1 Release 
Notes

Major Bug Fixes   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   3-2

Upgrading from an Earlier Release    .   .   .   .   .   .   .   .   .   3-3
Backwards Compatibility of Tunable Parameters 

for Unified Fixed-Point Blocks  .   .   .   .   .   .   .   .   .   .   .   3-3



3 Simulink 5.0.1 Release Notes

3-2

Major Bug Fixes
Simulink 5.0.1 includes several bug fixes made since Version 5.0. This section 
describes the particularly important Version 5.0.1 bug fixes.

If you are viewing these Release Notes in PDF form, please refer to the HTML 
form of the Release Notes, using either the Help browser or the MathWorks 
Web site and use the link provided.

If you are upgrading from a release earlier than Release 13, then you should 
also see “Major Bug Fixes” on page 4-10 of the Simulink 5.0 Release Notes.



Upgrading from an Earlier Release

3-3

Upgrading from an Earlier Release
Below is an upgrade issue involved in upgrading from Simulink 5.0 to Version 
5.0.1.

If you are upgrading from a version earlier than 5.0, then you should see 
“Upgrading from an Earlier Release” on page 4-12 in the Simulink 5.0 Release 
Notes.

Backwards Compatibility of Tunable Parameters for 
Unified Fixed-Point Blocks
Unified fixed-point blocks with tunable parameters have compatibility 
problems under certain conditions in Release 13. The problem arises only if a 
tunable parameter is mapped to a built-in integer or single data type. When 
tunable parameters are mapped to built-in integers or single, the code 
generated by Real Time Workshop will be different for unified blocks than it 
was for Fixed-Point Blockset blocks in prior releases. There are no 
compatibility problems if a tunable parameter maps to a nonbuilt-in data type, 
such as a scaled fixed-point integer.

Tunable parameters are entered in a Simulink model by specifying the name 
of a MATLAB variable in a block’s dialog. This variable can be either a plain 
MATLAB variable or a Simulink parameter object. In either case, a numerical 
value will be defined for this tunable parameter by doing an assignment in 
MATLAB. MATLAB supports several numerical data types including the eight 
Simulink built-in numerical data types: double, single, int8, uint8, int16, 
uint16, int32, and uint32. One of these eight data types can be used when a 
value is defined for a MATLAB variable. The effect of the data type of the 
MATLAB variable is significantly different depending on how the tunable 
parameter is used in Simulink.

For Simulink built-in blocks, the legacy rule is to fully respect the data type 
used for the value of a MATLAB variable. Whatever data type is used in 
MATLAB when assigning a value to a variable is also be used when declaring 
that parameter in code generated by Real Time Workshop. The use of that 
parameter by a block may require the value to be represented using a different 
data type. If so, additional code is generated to convert the parameter every 
time it is used by the block. To get the most efficient code for a given block, the 
value of the MATLAB variable should use the same data type as is needed by 
the block.



3 Simulink 5.0.1 Release Notes

3-4

For Fixed-Point Blockset blocks, the legacy rule is to expect no data type 
information from the MATLAB variable used for the tunable parameter. A 
fundamental reason for this is that MATLAB does not have native support for 
fixed-point data types and scaling, so the Simulink built-in legacy rule could 
not be directly extended to the general fixed-point case. Many fixed-point 
blocks automatically determine the data type and scaling for parameters based 
on what leads to the most efficient implementation of a given block. However, 
certain blocks such as Constant, as well as blocks that use tunable parameters 
in multiplication, do not imply a unique best choice for the data type and 
scaling of the parameter. These blocks have provided separate parameters on 
their dialogs for entering this information.

In Release 13, many Simulink built-in blocks and Fixed-Point Blockset blocks 
were unified. The Saturation block is an example of a unified block. The 
Saturation block appears in both the Simulink Library and in the Fixed-Point 
Blockset Library, but regardless of where it appears it has identical behavior. 
This identical unified behavior includes the treatment of tunable parameters. 
The dissimilarity of the legacy rules for tunable parameters has lead to a 
shortcoming in the unified blocks. Unified blocks obey the Simulink legacy rule 
sometimes and the Fixed-Point Blockset legacy rule at other times. If the block 
is using the parameter with built-in Simulink data types, then the Simulink 
legacy rule applies. If the block is using the parameter with nonbuilt-in data 
types, such as scaled fixed-point data types, then the Fixed-Point Blockset 
legacy rule applies. This gives full backwards compatibility with one important 
exception.

The backwards compatibility issue arises when a model created prior to R13 
uses a Fixed-Point Blockset block with a tunable parameter, and the data type 
used by the block happens to be a built-in data type. If the block is unified, it 
will now handle the parameter using the Simulink legacy rule rather than the 
Fixed-Point Blockset legacy rule. This can have a significant impact. For 
example, suppose the tunable parameter is used in a Saturation block and the 
data type of the input signal is a built-in int16. In prior releases, the 
Fixed-Point Blockset block would have declared the parameter as an int16. 
For legacy fixed-point models, the MATLAB variables used for tunable 
parameters invariably gave their value using floating-point double. The 
unified Saturation block would now declare the tunable parameter in the 
generated code as double. This has several negatives. The variable takes up six 
more bytes of memory as a double than as an int16. The code for the 
Saturation block now includes conversions from double to int16 that execute 
every time the block executes. This increases code size and slows down 



Upgrading from an Earlier Release

3-5

execution. If the design was intended for use on a fixed-point processor, the use 
of floating-point variables and floating-point conversion code is likely to be 
unacceptable. It should be noted that the numerical behavior of the blocks is 
not changed even though the generated code is different.

For an individual block, the backwards compatibility issue is easily solved. The 
solution involves understanding that the Simulink legacy rule is being applied. 
The Simulink legacy rule preserves the data type used when assigning the 
value to the MATLAB variable. The problem is that an undesired data type will 
be used in the generated code. To solve this, you should change the way you 
assign the value of the tunable parameter. Determine what data type is desired 
in the generated code, then use an explicit type cast when assigning the value 
in MATLAB. For example, if int16 is desired in the generated code and the 
initial value is 3, then assign the value in MATLAB as int16(3). The 
generated code will now be as desired.

A preliminary step to solving this issue with tunable parameters is identifying 
which blocks are affected. In most cases, the treatment of the parameter will 
involve a downcast from double to a smaller data type. On the Diagnostics tab 
of the Simulation Parameters dialog is a line item called Parameter 
downcast. Setting this item to Warning or None will help identify the blocks 
whose tunable parameters require reassignment of their variables.

In R13, the solution described above did not work for three unified blocks: 
Switch, Look-Up Table, and Lookup Table (2-D). These blocks caused errors 
when the value of a tunable parameter was specified using integer data types. 
This was a false error and has been removed. Using an explicit type cast when 
assigning a value to the MATLAB variable now solves the issue of generating 
code with the desired data types.



3 Simulink 5.0.1 Release Notes

3-6



 

4
Simulink 5.0 Release 
Notes

New Features    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   4-2
Block Enhancements  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   4-2
Simulation Enhancements .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   4-6
Modeling Enhancements    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   4-7

Major Bug Fixes   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 4-10

Platform Limitations for HP and IBM    .   .   .   .   .   .   .   . 4-11

Upgrading from an Earlier Release    .   .   .   .   .   .   .   .   . 4-12
BlockInstanceData Function Deprecated  .   .   .   .   .   .   .   .   . 4-12



4 Simulink 5.0 Release Notes

4-2

New Features

Note  Simulink 5.0 incorporates changes introduced in Simulink 4.1.1, which 
was initially released in Web-downloadable form after Release 12.1 was 
released, but before Release 13. These Release Notes describe those changes, 
as well as other changes introduced after Version 4.1.1.

Simulink 5.0 introduce features and enhancements in the following areas:

• “Block Enhancements” on page 4-2

• “Simulation Enhancements” on page 4-6

• “Modeling Enhancements” on page 4-7

If you are upgrading from a release earlier than Release 12.1, then you should 
also see “New Features” on page 5-2 in the Simulink 4.1 Release Notes.

Block Enhancements
Simulink 5.0 includes the following block-related enhancements:

• “Fixed-Point Block Library” on page 4-3

• “Look-Up Table Editor” on page 4-3

• “Model Verification Block Library” on page 4-4

• “Signal Builder Block” on page 4-4

• “DocBlock” on page 4-4

• “Rate Transition Block” on page 4-4

• “Block Library Reorganization” on page 4-4

• “Model Linearization Blocks” on page 4-4

• “Data Read/Write Block Navigation” on page 4-5

• “Enhanced S-Function Builder” on page 4-5

• “Miscellaneous Block Enhancements” on page 4-5



New Features

4-3

Fixed-Point Block Library
Simulink now includes the latest version (4.0) of the Fixed-Point Blockset. The 
library was previously available only as a separately installed option. You must 
have a Fixed-Point Blockset license to run models containing fixed-point blocks 
in fixed-point mode. However, you can open, edit, and run such models in 
floating-point mode, regardless of whether you have a Fixed-Point Blockset 
license. This change facilitates sharing of fixed-point models in large 
organizations by eliminating the need for all users in a group to have a 
Fixed-Point Blockset license in order to run or modifymodels containing 
fixed-point blocks. See “Installation and Licensing” in the Fixed-Point Blockset 
release notes for information on how to run models containing fixed-point 
blocks when you do not have a Fixed-Point Blockset license.

This release also unifies many core Simulink and Fixed-Point Blockset blocks 
that have similar functionality. For example, the Sum block in the Simulink 
Math Operations library and the Sum block in the Fixed-Point Blockset Math 
library are now the same block. As a result, you no longer have to replace any 
of the unified blocks when switching from built-in to fixed-point data types and 
vice versa. You can change the data types of the blocks simply by selecting the 
appropriate settings on their parameter dialog boxes. See “Unified Simulink 
and Fixed-Point Blockset Blocks” in the Fixed-Point Blockset release notes for 
more information and for a list of blocks that this release unifies.

Note  When you open an existing model, Simulink 5.0 updates the model to 
use the unified version of a standard or Fixed-Point Blockset block wherever 
an instance of that block occurs in the model. Simulink sets the parameters of 
the unified block to preserve the behavior of the original block. For example, 
wherever your existing model contains a Sum block from the Fixed-Point 
Blockset library, Simulink replaces the Fixed-Point Blockset version with a 
unified Sum block set to operate as a fixed-point block. This automatic 
updating ensures that your existing model runs the same in Simulink 5.0 as it 
did in previous releases of Simulink.

Look-Up Table Editor
The Look-Up Table Editor allows you to find and edit the contents of look-up 
tables used by look-up table blocks. See “Look-Up Table Editor” in the online 
Simulink documentation for more information.



4 Simulink 5.0 Release Notes

4-4

Model Verification Block Library
Simulink now includes a library of model verification blocks that enable you to 
create self-validating models. For example, you can use the blocks to test that 
signals do not exceed specified limits during simulation. When you are satisfied 
that a model is correct, you can turn error-checking off by disabling the model 
verification blocks. You do not have to physically remove them from the model. 
The library includes set of blocks preconfigured to check for common types of 
errors, for example, signals that exceed a specified upper or lower bound. See 
“Model Verification” in the online Simulink documentation for more 
information.

Signal Builder Block
The new Signal Builder block allows you to create interchangeable groups of 
signal sources and quickly switch the groups into and out of a model. The 
Signal Builder block’s signal editor allows you to define the waveforms of the 
signals output by the block. You can specify any waveform that is piecewise 
linear. Signal groups can greatly facilitate testing a model, especially when 
used in conjunction with Simulink assertion blocks and the optional Model 
Coverage Tool. See “Working with Signal Groups” for more information.

DocBlock
The new DocBlock block allows you to create text that documents a model and 
save that text with the model.

Rate Transition Block
Simulink now includes a Rate Transition block that allows you to specify the 
data transfer mechanism between two rates of a multirate system. See Rate 
Transition in the online Simulink block reference for more information.

Block Library Reorganization
The Simulink Block Library has been reorganized to simplify accessing blocks 
with related functionality. See for more information.

Model Linearization Blocks
This release introduces two blocks that generate linear models from a Simulink 
model at various times during a simulation. The Time-Based Linearization 
block generates linear models at specified time steps. The Trigger-Based 



New Features

4-5

Linearization block generates models when triggered by events appearing at 
its trigger port.

Data Read/Write Block Navigation
To come

Enhanced S-Function Builder
The S-Function Builder has been enhanced to generate S-functions with the 
following additional capabilities

• Multiple ports

• Support for all builtin datatypes

• Support for 2-D signals

• Support for complex signals

See “Building S-Functions Automatically” for more information.

Miscellaneous Block Enhancements
This release introduces the following enhancements to Simulink blocks.

Math Function Block. This release significantly speeds up the simuluation of the 
Math Function block’s exponential math functions. All functions now support 
both double- and single-precision floating-point inputs and outputs. The mod 
and rem functions also support inputs and outputs of all integer types. The 
transpose and hermitian functions support all data types. When 
optimizations are enabled, the conjugate operation on a real signal invokes the 
block reduction optimization, as that case is a no-op. In-place multiplies for the 
magnitude^2 operation are used for reused block I/O on real signals.

Gain Block . The Gain block now performs block reduction when block reduction 
is on, inline parameters=ON, and the gain is both nontunable and unity.

Width Block . The Width block now includes a parameter to specify the datatype 
of the output.

Real Data Type Support. The following blocks now operate on both double 
precision and single precision floating point signals:

• Dot Product



4 Simulink 5.0 Release Notes

4-6

• Trignometric

• Matrix Inversion

Block Data Type Table
To view a table that summarizes the data types supported by the blocks in the 
Simulink and Fixed-Point block libraries, execute the following command at 
the MATLAB command line:

showblockdatatypetable

Simulation Enhancements
Simulink 5.0 includes the following new features and enhancements to 
simulation of Simulink models.

• “Invalid Loop Highlighting” on page 4-6

• “Algebraic Loop Highlighting” on page 4-6

• “Conditional Input Branch Execution” on page 4-7

• “Reorganized Simulation Diagnostics” on page 4-7

• “Enhanced Diagnostic Viewer” on page 4-7

Invalid Loop Highlighting
Simulink now detects and highlights several kinds of invalid loops:

• Loops that create invalid function-call connections or an attempt to modify 
the input/output arguments of a function call

• Loops containing non-latched triggered subsystems

• Self-triggering subsystems

• Loops containing action subsystems in a cycle

This makes it is easier to identify and fix the loop. See “Avoiding Invalid Loops” 
for more information.

Algebraic Loop Highlighting
Simulink now optionally highlights algebraic loops when you update or 
simulate a model. See “Highlighting Algebraic Loops” for more information. 
The ashow debug command without any arguments now lists all of a model’s 
algebraic loops in the MATLAB command window.



New Features

4-7

Conditional Input Branch Execution
This release introduces a new optimization called conditional input branch 
execution. Previously, when simulating models containing Switch or Multiport 
Switch blocks, Simulink executed all blocks required to compute all inputs to 
each switch at each time step. In this release, Simulink, by default, executes 
only the blocks required to compute the control input and the data input 
selected by the control input at each time step. Similarly, code generated from 
the model by Real-Time Workshop executes only the code needed to compute 
the control input and the selected data input. This optimization speeds 
simulation and execution of code generated from the model. See 
“Optimizations” for more information.

Reorganized Simulation Diagnostics
The Diagnostics Pane of the Simulation Parameters dialog box now groups 
diagnostics by functionality. This makes it easier to find and configure related 
diagnostics.

Enhanced Diagnostic Viewer
This release introduces an enhanced Diagnostic Viewer. Improvements include

• Identical appearance on UNIX and Windows

• Hyperlinks to Simulink, Stateflow, and Real-Time Workshop objects that 
caused the errors displayed in the viewer

• Sortable error list

Clicking a column head sorts the error list by the contents of that column.

• Configurable content

The View menu allows you to choose which information to display in the 
viewer.

• Selectable font size

The FontSize menu allows you to choose the size of the font used to display 
error messages.

See “Simulation Diagnostic Viewer” for more information.

Modeling Enhancements
The following enhancements facilitate creation of Simulink models.



4 Simulink 5.0 Release Notes

4-8

• “Enhanced Mask Editor” on page 4-8

• “Production Hardware Characteristics” on page 4-8

• “Including Symbols and Greek Letters in Block Diagrams” on page 4-8

• “True Color Support” on page 4-9

• “Print Details” on page 4-9

• “Boolean Logic Signals” on page 4-9

• “Model Discretizer” on page 4-9

Enhanced Mask Editor
This release introduces changes to the Mask Editor designed to improve 
usability. Changes include

• Block parameter information moves from the Initialization pane to a new 
pane entitled Parameters.

• The Parameters pane allows you to specify a callback function to be called 
when the value of a parameter changes.

• The Parameters pane allows you to specify via check boxes whether a 
parameter is visible on the masked block’s dialog box and whether a 
parameter is tunable.

• The Icon pane provides a list of examples of all the types of drawing 
commands that can be used to draw the block’s icon.

See “Creating Masked Subsystems” in the online Simulink documentation for 
more information.

Including Symbols and Greek Letters in Block Diagrams
This release allows you to include symbols, Greek letters, and other formatting 
in annotations, masked subsystem port labels, and masked subsystem icon 
text. You do this by including TeX formatting commands in the annotation, 
port label, or icon text.

Production Hardware Characteristics
Production hardware characteristics is a new setting on the Advanced pane 
of the Simulation parameters dialog box. This setting, intended for use in 
modeling, simulating, and generating code for digital systems, allows you to 
specify the sizes of the data types supported by the system being modeled. 



New Features

4-9

Simulink uses this information to automate the choice of data types for signals 
output by some blocks. See “The Advanced Pane” for more information.

True Color Support
This release allows you to use any color supported by your system as the 
foreground or background colors of a block diagram. See “Specifying Block 
Diagram Colors” in the online documentation for more information.

Print Details
This command generates an HTML report detailing the contents of the 
currently selected model (see “Generating a Model Report” in the online 
documentation for more information).

Boolean Logic Signals
In previous releases, the Boolean logic signals optimization was off by 
default for new models (see “Optimizations” in the online Simulink 
documentation for a description of this option). In the current release, the 
optimization is on by default for new models. This change does not affect 
existing models.

Model Discretizer
The Model Discretizer tool selectively replaces continuous Simulink blocks 
with discrete equivalents. Discretization is critical in digital controller design 
for dynamic systems and for hardware in the loop simulations. You can use this 
tool to prepare continuous models for use with the Real-Time Workshop 
Embedded Coder, which supports only discrete blocks. See “Model Discretizer” 
in the online documentation for more information.



4 Simulink 5.0 Release Notes

4-10

Major Bug Fixes
Simulink 5.0 includes several bug fixes made since Version 4.1. This section 
describes the particularly important Version 5.0 bug fixes.

If you are viewing these Release Notes in PDF form, please refer to the HTML 
form of the Release Notes, using either the Help browser or the MathWorks 
Web site and use the link provided.

If you are upgrading from a release earlier than Release 12.1, then you should 
also see “Bug Fixes” on page 5-10.



Platform Limitations for HP and IBM

4-11

Platform Limitations for HP and IBM
The following are platform limitations for Simulink 5.0 for the HP and IBM 
platforms that are new limitations, as of Version 5.0.

• New version of the Mask Editor

• New version of the Diagnostic Viewer

• The Model Discretizer

Note  The Release 12 and 12.1 platform limitations for Simulink for the HP 
and IBM platforms still apply to Release 13. These are listed below.

The following Java-dependent Simulink features, introduced in Simulink 4.1, 
are not available on the HP and IBM platforms.

• Simulink Data Class Designer

• S-Function Builder

• Look-Up Table Editor

In addition, the following Simulink features are not supported on the HP and 
IBM platforms:

• Simulink Editor’s Find dialog

Use the find_system command instead.

• GUI interface to the Simulink Debugger

Use the command-line interface instead.

• The View Changes dialog box for modified library links

Instead, select the modified link and execute 
ld=get_param(gcb,'LinkData') to get a structure that lists the parameter 
differences between the library and local instance of the block. Edit this 
structure and execute set_param(gcb,'LinkData',ld) to apply the 
changes.

• Parameter dialog for the Configurable Subsystem block.

Use the set_param command instead to set the block’s parameters.

• Model Discretizer



4 Simulink 5.0 Release Notes

4-12

Upgrading from an Earlier Release
This section describes an upgrade issue involved in moving from Simulink 4.1 
to Version 5.0.

If you are upgrading from a version earlier than 4.1, then you should see 
“Upgrading from an Earlier Release” on page 5-12 in the Simulink 4.1 Release 
Notes.

BlockInstanceData Function Deprecated
S-functions should no longer call the BlockInstanceData function. All data 
used by a block should be declared using data type work vectors (e.g., DWORK).



 

5
Simulink 4.1 Release 
Notes

New Features    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   5-2
Simulink Editor   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   5-2
Modeling Enhancements    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   5-4
Simulink Debugger .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   5-7
Block Library   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   5-8

Bug Fixes   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 5-10

Upgrading from an Earlier Release    .   .   .   .   .   .   .   .   . 5-12
Running Simulink 4.1 Models in Simulink 4.0 .   .   .   .   .   .   . 5-12
Simulink Block Library Reorganization    .   .   .   .   .   .   .   .   . 5-12
Direct Feedthrough Compensation Deprecated    .   .   .   .   .   . 5-12
S-Functions Sorted Like Built-In Blocks   .   .   .   .   .   .   .   .   . 5-13
Added Latched Triggered Subsystems   .   .   .   .   .   .   .   .   .   . 5-13
Self-Triggering Subsystems Are No Longer Allowed    .   .   .   . 5-13
Improved Invalid Model Configuration Diagnostics .   .   .   .   . 5-14



5 Simulink 4.1 Release Notes

5-2

New Features
This section introduces the new features and enhancements added in Simulink 
4.1 since Simulink 4.0 (Release 12.0).

For information about Simulink features that are incorporated from recent 
releases, see “New Features” on page 6-2 in the Simulink 4.0 Release Notes.

This section about new Simulink features is organized into the following 
subsections:

• “Simulink Editor” on page 5-2

• “Modeling Enhancements” on page 5-4

• “Simulink Debugger” on page 5-7

• “Block Library” on page 5-8

Simulink Editor
This section describes enhancements to the Simulink Editor.

Undo Move
In Simulink 4.1, the Undo command on the Simulink Edit menu restores 
blocks, annotations, lines, and nodes that have moved to their original 
locations (see “Undoing a Command” in Using Simulink).

Undo Subsystem Creation
In Simulink 4.1, the Undo command on the Simulink Edit menu restores 
blocks that have been grouped into a subsystem to their original level in the 
model (see “Undoing Subsystem Creation” in Using Simulink).



New Features

5-3

Autoconnecting Blocks
This version makes connecting blocks significantly easier. To connect a set of 
source blocks to a target block, simply select the source blocks, hold down the 
Ctrl key and left--click the target block. Simulink draws connecting lines 
between the source blocks and the destination block, neatly routing lines 
around intervening blocks. To connect a source block to a set of target blocks, 
select the target blocks, hold down the Ctrl key and left--click the source block. 
To connect two blocks, select the source block, and left-click the destination 
block while holding down the Ctrl key. Simulink connects as many ports on the 
two blocks as possible (see “Autoconnecting Blocks” in Using Simulink).

Autorouting Signal Lines
Simulink now routes signal lines around intervening blocks when you connect 
them either interactively (by dragging the connecting lines or using 
autoconnect) or programmatically via the add_line command’s new 
'autorouting' option (see “Autorouting Option Added to add_line Command” 
on page 5-4).

Displaying Storage Class on Lines 
This version adds an item to the Format menu, which toggles the display of 
(nonAuto) storage class on signal lines (see “RTW Storage Class” in Using 
Simulink for more information).

Save Models in Release 11 Format 
This release can save post-Release 11 models in Release 11 format. Simulink 3 
(Release 11) can load and run converted models that do not use any 
post-Release 11 features of Simulink. Simulink 3 can load converted models 
that use post-Release 11 features but may not be able to simulate the model 
correctly. Use the Save as option from the Simulink File menu or the following 
command to save a model in Release 11 format. 

slsaveas(SYS)

See “Saving a Model in Simulink 3 (R11) format” in Using Simulink for more 
information.



5 Simulink 4.1 Release Notes

5-4

Modeling Enhancements
This section describes enhancements to Simulink dynamic system modeling 
tools.

Autorouting Option Added to add_line Command
The add_line command now optionally routes lines around intervening blocks 
and annotations. For example, the following command autoroutes a connection 
between two blocks in the vdp model.

add_line('vdp','Product/1','Mu/1','autorouting','on')

The autorouting option is off by default. See add_line in Using Simulink for 
more information.

S-Function Builder 
The S-Function Builder generates an S-function from specifications that you 
enter in a dialog box. It provides an easy way for you to incorporate existing 
code into a Simulink model.

add_param, delete_param 
With this version, you can add custom parameters to your block diagrams. 

   add_param('modelname','MyParameterName','value')
   delete_param('modelname','MyParameterName')

You can also use the model handle in place of the model name. See add_param 
and delete_param in Using Simulink for more information.

Connection Callbacks
With this version, you can use set_param to set callbacks on ports that are 
triggered by changes in the ports’ connectivity. The callback function 
parameter is named ConnectionCallback. When the port’s connectivity 
changes (addition/deletion of line connected to the port, connection of new block 
to the port, etc.), Simulink invokes the callback function with the port handle 
as its argument. See “Port Callback Parameters” in Using Simulink for more 
information.



New Features

5-5

Saving Block User Data in Model Files
This version adds a new block parameter, named UserDataPersistent, that is 
off by default. Setting this parameter on, e.g.,

set_param(block-name,'UserDataPersistent','on')

causes Simulink to include a block’s user data (i.e., the value of the block’s 
UserData parameter) in the model file when you save a model. Simulink 
encodes the user data as ASCII characters and saves the encoded data in a new 
section of the model file called MatData. This mechanism works with all forms 
of MATLAB data, including arrays, structures, objects, and Simulink data 
objects. See “Associating User Data with Blocks” in Using Simulink for more 
information.

Absolute Tolerance Enhancements 
This version adds a dialog item for setting the absolute tolerance for each state 
in the State-Space block, the Transfer Fcn block, and the Zero-Pole block. With 
this enhancement, you can now specify the absolute tolerance for solving every 
continuous state in your model.

Block Reduction Enhancements 
S-functions may now request that they be eliminated from the compiled model. 
To do this, call ssSetBlockReduction(true) inside the S-function. This is an 
advanced feature provided for customers writing S-functions who want to 
optimize the generated code produced for their S-function. Graphical 
connectivity is now remapped during block reduction, eliminating a source of 
error during reduction (e.g., a memory reference error used to occur if Simulink 
eliminated a block connected to a scope). Block reduction is now on by default, 
and a Simulink preference has been added for the option. 

Boolean Logic Signals Preference 
The Simulink Preferences dialog box now allows you to specify the use of 
Boolean logic signals by default. See “Setting Simulink Preferences” in Using 
Simulink for more information.

Subsystem Semantics Demos
Typing sl_subsys_semantics at the MATLAB prompt now displays a set of 
models that illustrate the semantics of various types of subsystem blocks. The 
demos include formal definitions of function-call subsystems. 



5 Simulink 4.1 Release Notes

5-6

Enhanced Engine Model Demos
The top and bottom dead center detection in the engine and enginewc demo 
models now use a reset integrator. In previous versions, the models used a 
triggered subsystem to detect angular position. This method resulted in 
inefficiencies and a slower, less accurate solution. In addition, self-triggering 
subsystems are now illegal in Simulink.

Setting Block Sorting Priority on Virtual Subsystems 
In Simulink 4.0, it was an error to specify a priority on a virtual subsystem. In 
Simulink 4.1, you can specify priorities on virtual subsystems. 

Using ~ in Filenames on UNIX
Now all filename fields in Simulink support the mapping of the ~ character in 
filenames. For example, in a To File block, you can specify ~/outdir/file.mat. 
On most systems, this will expand to /home/$USER/outdir/file.mat. 

Improved Warning About Slow Signals Feeding the Enable Port of an 
Enabled Subsystem Containing Fast Blocks 
In a multitasking environment, deterministic results cannot be guaranteed if 
a slow signal feeds the enable port of an enabled subsystem that contains fast 
blocks. In previous versions, Simulink did not issue a warning in some cases 
where this may occur. 

Flagging Function-Call Subsystem Cycles
In previous versions, Simulink allowed you to build models containing 
function-call-cycles, i.e., function-call subsystems that directly or indirectly call 
themselves.



New Features

5-7

Such models cannot be correctly simulated. Accordingly, Simulink now 
displays an error message when you attempt to run or update a diagram 
containing function-call cycles. 

Simulink Debugger
This section describes enhancements to the Simulink debugger.

Enhancement to Sorted List Display 
The Simulink debugger (sldebug) sorted list command, slist, now displays 
the names of the S-functions residing inside S-function blocks. 

Improved Messages in Accelerated Mode 
The trace, break, zcbreak, nanbreak, and minor commands now indicate that 
they are disabled when in accelerator mode and you need to switch to normal 
mode to activate them. The spacing of several messages has been fixed so the 
text aligns correctly.

Breakpoints on a Function-Call Subsystem 
You can now put a break point on a function-call subsystem. Simulink breaks 
when the subsystem is executed. In Release 12, entering the quit command 
while at a breakpoint within a function-call subsystem wouldn't always quit 
the debugger. Now the quit command ends the debugging session once the 
initiating (calling) Stateflow chart or S-function finishes executing its time 
step.

Displaying and Probing Virtual Blocks
The display and probe commands now work for virtual blocks. 

Stepping Stateflow Charts 
You can now step execution of a model into a Stateflow chart. 



5 Simulink 4.1 Release Notes

5-8

Block Library
This section describes enhancements to the Simulink block libraries.

Unified Pulse Generator
This version merges the Discrete Pulse Generator block into the Pulse 
Generator block. The combined block has two modes: time-based and 
sample-based (discrete). Time-based mode varies the step size when a variable 
step solver is being used to ensure that simulation steps occur at pulse on/off 
transitions. When a fixed step solver is used, the time-based mode computes a 
fixed step size that ensures that a simulation step occurs at every pulse 
transition. The Pulse Generator block also outputs a pulse of any real data type 
in sample-based as well as time-based mode.

Control Flow Blocks 
Simulink 4.1 adds an If block and Switch Case block that can drive 
conditionally executed subsystems that contain instances of the new Action 
Port block. Action subsystems are similar to enabled subsystems, except that 
all blocks must run at the same rate as the If or Switch Case block.

This version also adds a For Iterator block and a While Iterator block. When 
placed in a subsystem, these blocks cause all of the blocks in the system to run 
multiple cycles during a time step. The block cycle in a For Iterator subsystem 
runs a specified number of times. The block cycle in a While Iterator subsystem 
runs until a specified condition is false. A user can limit execution of a While 
Iterator subsystem to a specified number of iterations to avoid infinite loops.

The new Assignment block allows a model to assign values to specified 
elements of a signal.

Bus Creator 
Simulink 4.1 adds a Bus Creator block that combines the output of multiple 
blocks into a single signal bus. A model can use the existing Signal Selector 
block to extract signals from the bus. The block’s dialog box allows you to assign 
names to signals on the bus or allow the signals to inherit their names from 
their sources. When you double-click on a signal name in the block dialog, the 
source block is highlighted. There is no execution overhead in the use of bus 
creator/bus selector blocks.



New Features

5-9

Sine Wave Block Enhancements 
The Sine Wave block now supports a bias factor that eliminates the need to 
sum with a Constant block. The Sine Wave block also has a new computational 
mode. This mode (called sample-based) eliminates the dependence on absolute 
time.

Enhanced Flip-Flop Blocks
Simulink Extras (simulink_extras.mdl) contains a set flip-flop blocks. These 
blocks now use the new triggered subsystem latching semantics. In addition, 
the S-R Flip-Flop block now models a physical NOR gate (i.e., S=1, R=1 => Q=0, 
Q!=0, the undefined state).

Additional Data Type Support
The Discrete-Time Integrator and Rounding Function blocks now handle 
single as well as double values. The Transport Delay, Unit Delay, Variable 
Transport Delay, Memory, Merge, and Outport blocks can specify nonzero 
initial conditions when operating on fixed-point signals.

Simulink Block Library Reorganization
The Simulink Block Library contains a new Subsystems sublibrary. The new 
library contains most of the new control flow blocks as well as subsystem and 
subsystem-related blocks that used to reside in the Signals & Systems library. 
The subsystems in the new library each contain the minimum set of blocks 
needed to create a functioning subsystem, e.g., an input port and an output 
port.

Scope Enhancements
The Scope block includes the following enhancements:

• A floating version of the Scope added to the Sinks block library

• Floating Scope saves the signals selected for display in the model file

• The Scope’s toolbar buttons for toggling between floating/nonfloating mode, 
restoring saved axes, locking/unlocking axes, and displaying the Signal 
Selector



5 Simulink 4.1 Release Notes

5-10

Bug Fixes
This section lists fixes to bugs that occurred in the previous version of 
Simulink.

• Variable sample time S-functions 

Simulink no longer crashes when an S-function with variable sample time is 
placed in an atomic subsystem. 

• Bus selector detection of duplicated names 

A bug related to the detection of a duplicated name in a bus that was feeding 
a Bus Selector block was fixed. 

• Optimize block memory use 

In Simulink 4.0, the Continuous and Discrete Transfer Function blocks and 
the Discrete Filter block used more memory than they needed to, 
particularly for the case of many poles. They now use an optimal amount of 
memory. 

• Miscellaneous fixes to the model loader 

Miscellaneous bug fixes have been performed on the model loader: 

- The loader and saver now retain any comment lines (i.e., lines that begin 
with #) that are found at the top of the model file. 

- The loader does not crash on Windows NT when file sizes are integer 
multiples of 4096.

- The loader does not hang on corrupt models in which blocks with duplicate 
names are found.

• Profiler fixes 

The Simulink profiler now saves its files in the temporary directory. See the 
MATLAB command tempdir. The help was also updated. 

• Chirp block fix 

The Chirp block now sweeps through frequencies correctly from the initial 
frequency at the simulation start time to the target frequency at the target 
time. 

• Function-call subsystem bug fixes 

This version fixes several bugs related to the execution orders of function-call 
subsystems.



Bug Fixes

5-11

• Sorting bug fix 

Previous versions incorrectly computed the direct feedthrough setting for 
nonvirtual subsystems in triggered/function-call subsystems. This resulted 
in incorrect execution (sorting) orders. Now all nonvirtual subsystems within 
triggered subsystems have their direct feedthrough (needs input) flags set 
for all input ports. This is needed because a nonvirtual subsystem with a 
triggered sample time executes both its output and update methods together 
within the context of the model's output method. 

• Fixed handling of grounded/unconnected inputs feeding certain blocks 

Simulink 4.0 incorrectly handled grounded or unconnected inputs to level-1 
and level-2 S-functions requiring contiguous inputs and to some Matrix 
blocks. This has been fixed in Simulink 4.1. 



5 Simulink 4.1 Release Notes

5-12

Upgrading from an Earlier Release
This section discusses upgrade issues in moving from Simulink 4.0 to Simulink 
4.1.

See “Upgrading from an Earlier Release” on page 6-10 in the Simulink 4.0 
Release Notes for upgrade issues involved in moving from Simulink 3.0 
(Release 11.0) to Simulink 4.1.

Running Simulink 4.1 Models in Simulink 4.0
Simulink 4.0 can run models created or saved by Simulink 4.1 as long as the 
models do not use features introduced in the new version, including new block 
types and block parameters. In particular, you should not attempt to use 
Simulink 4.0 to simulate or even open models that use the new Simulink 
control flow blocks. Opening such models cause Simulink 4.0 to crash.

Simulink Block Library Reorganization
The Simulink Block Library contains a new Subsystems sublibrary. The new 
library contains most of the new control flow blocks as well as subsystem and 
subsystem-related blocks that used to reside in the Signals & Systems library. 
The subsystems in the new library each contain the minimum set of blocks 
needed to create a functioning subsystem, e.g., an input port and an output 
port.

Direct Feedthrough Compensation Deprecated
If an S-function needs the current value of its input to compute its output, it 
must set its direct feedthrough flag to true. Previously, if a direct feedthrough 
S-function failed to do this, Simulink tried to provide a valid signal to the 
S-function’s mdlOutput (M-file flag=3) or mdlGetTimeOfNextVarHit (M-file 
flag=4) methods. This special compensation mode for S-functions was flawed. 
For this reason, the current version deprecates the mode, though making it 
available as an option. In this version, by default, if an S-function sets its direct 
feedthrough flag to false during initialization, Simulink sets the S-function’s 
input signal to NULL (or a NaN signal for M-file S-functions) during the 
mdlOutput or mdlGetTimeOfNextVarHit methods. Thus, in this version, models 
with S-function(s) may produce segmentation violations. See matlabroot/
simulink/src/sfuntmpl_directfeed.txt for more information.



Upgrading from an Earlier Release

5-13

S-Functions Sorted Like Built-In Blocks
When sorting blocks, Simulink now treats S-function blocks the way it treats 
built-in blocks. This means that S-functions now work correctly in nonvirtual 
subsystems when there is a direct feedback connection (in Simulink 4.0 and 
prior, this wasn't the case). It also means that models compile (update 
diagram) faster. As a side effect, the execution order for S-functions that 
incorrectly set the direct feedthrough flag differs from that used in previous 
versions of Simulink. Consequently, models that contain invalid S-functions 
may produce different answers in this version of Simulink. 

Added Latched Triggered Subsystems 
Now triggered subsystems enable you to implement software triggering, 
hardware triggering, or a combination of the two. Software triggering is 
defined as 

if (trigger_signal_edge_detected) {
out(t) = f(in(t));

}

Hardware triggering is defined as 

if (trigger_signal_edge_detected) {
out(t) = f(in(t-h));   // h == last step size

}

Previous to this version, triggered subsystems provided software triggering 
and a form of hardware triggering when a cycle involving triggered subsystems 
existed. Now, you must explicitly specify whether or not you’d like software or 
hardware triggering. This is done by selecting 'Latch (buffer) input' on the 
Inport blocks in a triggered subsystem. 

Each input port of a triggered subsystem configures whether or not the input 
should be latched. A latched input provides the hardware-triggering semantics 
for that input port. Type sl_subsys_semantics at the MATLAB prompt for 
more information.

Self-Triggering Subsystems Are No Longer Allowed 
Before this version, you could define the output of a triggered subsystem to 
directly feed back into the trigger port of the subsystem (with potentially other 



5 Simulink 4.1 Release Notes

5-14

additive signals). This resulted in an implicit delay. Now you must explicitly 
define the delay by inserting a memory block.

Improved Invalid Model Configuration Diagnostics
This version of Simulink does a better job of detecting and flagging invalid 
modeling constructs in Simulink models. Consequently models that ran in 
previous versions of Simulink (sometimes producing incorrect results) may not 
run in the current release. The changes include:

• Direct feedthrough compensation no longer occurs by default for S-functions 
(see “Direct Feedthrough Compensation Deprecated” on page 5-12).

• S-functions are now sorted like built-in blocks (see “S-Functions Sorted Like 
Built-In Blocks” on page 5-13).

• Simulink no longer inserts implicit latches in triggered subsystems that 
directly or indirectly trigger themselves (see “Self-Triggering Subsystems 
Are No Longer Allowed” on page 5-13, above). Instead it signals an error 
when it detects a triggered subsystem loop with unlatched inputs. To avoid 
the error, you must select the Latch option on the triggered subsystem’s 
input ports.

• Simulink now signals an error when it detects invalid configurations of 
function-call subsystems. See the Subsystem Examples block in the 
Subsystems library for examples of illegal modeling constructs involving 
function-call subsystems. You can disable this diagnostic by setting the 
Invalid FcnCall Connection parameter on the Diagnostics pane of the 
Simulation Parameters dialog box to none or warning.



 

6
Simulink 4.0 Release 
Notes

New Features    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   6-2
Simulink Editor   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   6-2
Modeling Enhancements    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   6-5
Simulink Debugger .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   6-6
Block Library   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   6-6
SB2SL  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   6-9

Upgrading from an Earlier Release    .   .   .   .   .   .   .   .   . 6-10
Port Name Property    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 6-10



6 Simulink 4.0 Release Notes

6-2

New Features
This section introduces the new features and enhancements added in Simulink 
4.0 since Simulink 3.0 (Release 11.0).

This section about new Simulink features is organized into the following 
subsections:

• “Simulink Editor” on page 6-2

• “Modeling Enhancements” on page 6-5

• “Simulink Debugger” on page 6-6

• “Block Library” on page 6-6

• “SB2SL” on page 6-9

Simulink Editor
This section describes enhancements to the Simulink Editor.

Preferences
The Simulink Preferences dialog box allows you to specify default settings for 
many options (see “Setting Simulink Preferences” in Using Simulink).

Text Alignment
Simulink 4.0 allows you to choose various alignments for annotation text. To 
choose an alignment for an annotation, select the annotation and then select 
Text Alignment from the editor menubar or context (right-click) menu (see 
“Annotations” in Using Simulink).

UNIX Context Menus
The UNIX version of Simulink 4.0 now has context menus for block diagrams. 
Click the right button on your mouse to display the menu.

Library Link Enhancements
Simulink 4.0 optionally displays an arrow in each block that represents a 
library link in a model. Simulink 4.0 also allows you to modify a link in a model 
and propagate the changes back to the library (see “Modifying a Linked 
Subsystem” in Using Simulink).



6-3

Note  Simulink displays “Parameterized Link” on the parameter dialog box of 
a masked subsystem whose parameters differ from the library reference block 
to which the masked subsystem is linked. This feature, which is not 
documented in Using Simulink, allows you to determine quickly whether a 
library link differs from its reference.

Find Dialog Box
The Find dialog box enables you to search Simulink models and Stateflow 
charts for objects that satisfy specified search criteria. You can use the dialog 
box to find annotations, blocks, signals, states, state transitions, etc. To invoke 
the Find dialog, select Find from the Simulink Edit menu (see “Searching for 
Objects” in Using Simulink).

Model Browser
The Model Browser’s toolbar includes the following new buttons:

• Show Library Links

Shows library links as nodes in the browser tree.

• Look Under Masks

Shows the contents of masked blocks as nodes in the browser tree.

Single Window Mode
Simulink now provides two modes for opening subsystems. In multiwindow 
mode, Simulink opens each subsystem in a new window. In single-window 
mode, Simulink closes the parent and opens the subsystem (see “Window 
Reuse” in Using Simulink).

Keyboard Navigation
Simulink 4.0 provides the following new keyboard shortcuts.

Key Action

Tab Selects the next block in the block diagram.

Shift+Tab Selects the previous block in the block diagram.



6 Simulink 4.0 Release Notes

6-4

Enhanced Library Browser
The Library Browser incorporates the following new features:

• Blocks no longer appear as browser tree nodes. Instead, they appear as icons 
in the preview pane.

• The preview pane has moved from beneath the library tree pane to beside the 
tree pane. You can create instances of blocks displayed in the preview pane 
by dragging them from the preview pane and dropping them in a model.

• Splitter bars now divide the browser’s panes, allowing the panes to be 
independently resized.

• Double-clicking a block’s icon opens the block’s parameter dialog box with all 
fields disabled. This allows you to inspect, but not modify, a library block’s 
parameters.

• Double-clicking a library block opens the library in the preview pane.

• You can now insert a block in the topmost model on your screen by 
right-clicking the block in the preview pane and selecting Insert in… from 
the context menu that appears. If no model is open or the topmost model is a 
locked library, the Library Browser offers to create a model in which to insert 
the block.

• The browser now contains a menu with File, Edit, and Help options.

• The block help text pane has moved from the bottom of the Library Browser 
to the top.

• Selecting Find from the Library Browser’s Edit menu displays a modeless 
Find dialog box. 

• The browser’s search feature is much faster and supports regular 
expressions.

Ctrl+Tab Cycles between the browser tree pane and the 
diagram pane when the model browser is enabled.

Enter Opens the currently selected subsystem.

Esc Opens the parent of the current subsystem.

Key Action



6-5

Help Menus
Simulink 4.0 adds a Help menu to the menu bar on model and library windows. 
The help item on a block context menu displays a help page for the block. The 
help item on the model context menu displays the first page of the Using 
Simulink book.

Modeling Enhancements

Hierarchical Variable Scoping
This release extends the ability of Simulink to resolve references to variables 
in masked subsystems. Previously Simulink could resolve references only to 
variables in a block’s local workspace.With this release, Simulink will resolve 
references to variables located anywhere within the workspace hierarchy 
containing the block (see “The Mask Workspace” in Using Simulink).

Note  In some cases, hierarchical scoping will cause some models to behave 
differently in the current release than in previous releases of Simulink.

Matrix Signals
Many Simulink blocks can now accept or output matrix signals. A matrix 
signal is a two-dimensional array of signal elements represented by a matrix. 
Each matrix element represents the value of the corresponding signal element 
at the current time step. In addition to matrix signals, Simulink also supports 
scalar (dimensionless) signals and vector signals (one-dimensional arrays of 
signals). Simulink can optionally thicken (select Wide Lines from the Format 
menu) and display the dimensions of lines (select Line Dimensions from the 
Format menu) that carry vector or matrix signals. When you select the Line 
Dimensions option, Simulink displays a label of the form [r x c] above a 
matrix signal line, where r is the number of rows and c is the number of 
columns. For example, the label [2 x 3] indicates that the line carries a 
two-row by three-column matrix signal.

You can use Simulink source blocks, such as a Sine Wave or a Constant block, 
to generate matrix signals. For example, to create a time-invariant matrix 
signal, insert a Constant block in your model and set its Constant Value 
parameter to any MATLAB expression that evaluates to a matrix, e.g., [1 2; 



6 Simulink 4.0 Release Notes

6-6

3 4], that represents the desired signal. See “Working with Signals” in Using 
Simulink for more information.

Simulink Data Objects
Simulink data objects allow a model to capture user-defined information about 
parameters and signals, such as minimum and maximum values, units, and so 
on (see “Working with Data Objects” in Using Simulink).

Block Execution Order
Simulink now optionally displays the execution order of each block on the 
model’s block diagram (see “Displaying Block Execution Order” in Using 
Simulink).

Simulink Debugger
This section describes enhancements to the Simulink debugger.

GUI Debugger Interface
Simulink 4.0 introduces a graphical user interface (GUI) for the Simulink 
Debugger. For more information, see “Simulink Debugger” in the online help 
for Simulink (see “Simulink Debugger” in Using Simulink).

Block Library
This section describes enhancements to the Simulink block libraries.

Product Block
The Product block now supports both element-by-element and matrix 
multiplication and inversion of inputs. The block’s parameter dialog includes a 
new Multiplication parameter that allows you to specify whether the block 
should multiply or invert inputs element-by-element or matrix-by-matrix.

Gain Block
The Gain block now supports matrix as well as element-wise multiplication of 
the input signal by a gain factor. Both input signals and gain factors can be 
matrices. The block’s parameter dialog includes a new Multiplication 
parameter that allows you to choose the following options:

• K.*u (element-wise product)



6-7

• K*u (matrix product with the gain as the left operand)

• u*K (matrix product with the gain as the right operand)

Math Function Block
The Math Function block adds two new matrix-specific functions: transpose 
and Hermitian. The first function outputs the transpose of the input matrix. 
The second function outputs the complex conjugate transpose (Hermitian) of 
the input matrix.

Reshape Block
Simulink 4.0 introduces the Reshape block, which changes the dimensionality 
of its input signals, based on an Output dimensionality parameter that you 
specify. For example, the block can change an n-element vector to a 1-by-N or 
N-by-1 matrix signal and vice versa. You can find the Reshape block in the 
Simulink Signals & Systems library.

Multiplexing Matrix Signals
The Simulink Mux, Demux, and Bus Selector blocks have been enhanced to 
support multiplexing of matrix signals.

Function Call Iteration Parameter
Simulink 4.0 adds a Number of iterations parameter to the Function Call 
Generator block. This parameter allows you to specify the number of times the 
target block is called per time step.

Probing Signal Dimensionality
The Probe block now optionally outputs the dimensionality of the signal 
connected to its input.

Configurable Subsystem
The Configurable Subsystem block has been reimplemented to make it easier 
to use. The configurable subsystem block now has a Blocks menu that allows 
you to choose which block the subsystem represents. To display the menu, 
select the configurable subsystem and then Blocks from the Simulink editor’s 
Edit or context (right click) menu.



6 Simulink 4.0 Release Notes

6-8

Look-Up Table Blocks
This release provides four new Look-Up Table (LUT) blocks.

• Direct Look-Up Table (n-D)

• Look-Up Table (n-D)

• Prelook-Up Index Search

• Interpolation (n-D) Using PreLook-Up

The blocks reside in the Simulink Functions and Tables block library.

Polynomial Block
The Polynomial block outputs a polynomial function of its input. The block 
resides in the Simulink Functions and Tables block library.

Signal Specification
The Signal Specification block allows you to specify the attributes that the 
input signal must satisfy. If the input signal does not meet the specification, 
the block generates an error.

ADA S-Functions
Simulink now supports S-functions coded in ADA. See “Creating Ada 
S-Functions” in Writing S-Functions for more information.

Bitwise Logical Operator Block
The Bitwise Operator block is a new block that logically masks, inverts, or 
shifts the bits of an unsigned integer signal. See the online Simulink 
documentation for details.

Atomic Subsystems
Simulink 4.0 allows you to designate subsystems as atomic as opposed to 
virtual. An atomic subsystem is a true subsystem. When simulating a model, 
Simulink executes all blocks contained by an atomic subsystem block before 
executing the next block of the containing model (or atomic subsystem). 

By declaring a subsystem atomic, you guarantee that Simulink completes 
execution of the subsystem before executing any other blocks at the same level 
in the model hierarchy. See “Atomic Versus Virtual Subsystems” in Using 
Simulink for more information.



6-9

Note  Conditionally executed subsystems are inherently atomic. Simulink 
does not allow you to specify them as atomic or virtual.

SB2SL

SB2SL Extends Code Generation Support
SB2SL, which is included as part of Simulink, allows you to translate 
SystemBuild SuperBlocks to Simulink models.

For Release 12, SB2SL 2.1 has been enhanced to provide more complete 
support for use with the Real-Time Workshop. If you use the Real-Time 
Workshop 4.0 to generate code for models you have converted from 
SystemBuild to Simulink (using SB2SL), then code is generated for most 
translated blocks in the model.

The blocks that do not support code generation through the Real-Time 
Workshop 4.0 are:

• ConditionBlock

• Decoder

• Encoder

• GainScheduler

• Interp Table (Archive library)

• ShiftRegister

Note  SB2SL 2.1 also includes a number of important bug fixes.



6 Simulink 4.0 Release Notes

6-10

Upgrading from an Earlier Release
This section describes the upgrade issues involved in moving from Simulink 3.0 
(Release 11.0) to Simulink 4.0.

Port Name Property
In previous releases, the name property of ports and lines referred to the label 
of the line connected to the port. In the current release, a port’s name property 
refers to the port’s (and line’s) name, which, in the current release, can differ 
from the line’s label.If you need to get the line’s label, invoke

get_param(p, 'label')

where p is the handle of the port.


	Simulink 6.0 Release Notes
	New Features
	Model Explorer
	Configuration Sets
	Model Referencing
	Model Workspaces
	Implicit Fixed-Step Solver
	The Signal and Scope Manager
	Data Object Type Enhancements
	Block Enhancements
	Signal Enhancements
	Rate Transition Enhancements
	Execution Context Enhancements
	Algebraic Loop Minimization
	Level-2 M-File S-Functions
	Panning Model Diagrams

	Model Referencing Limitations
	Referencing and Referenced Model Limitations
	Referencing Model Limitations
	Referenced Model Limitations

	Major Bug Fixes
	Upgrading from an Earlier Release
	Changes in MATLAB Data Type Conversions
	Signal Object Resolution Changes
	Loading Models Containing Non-ASCII Characters
	Change in Sample Time Behavior of Unary Minus Block
	Initial Output of Conditionally Executed Subsystems
	Execution Context Default Changes

	Known Software and Documentation Problems
	Turn the New Wrap Lines Option Off
	Model Referencing Problems
	Embedded MATLAB Function Block
	Block Positions Limited to Less Than 32768
	Cannot Modify Instantiated Class
	Blocksets Menu Sometimes Fails to Appear
	PostSaveFcn Cannot Find Model on First Save
	Saturation Block's Output Differs on Different Platforms
	Limitation on Discretizing Models in the S Domain
	Finder, Debugger Help Buttons Broken
	Changing a Subsystem Port Number Can Corrupt a Model


	Simulink 5.1 Release Notes
	New Features
	Sample Time Parameters Exposed
	Enhanced Debugger
	Context-Sensitive Data Typing of Tunable Parameters
	Conditional Execution Behavior
	Function-Call Subsystem Enhancements
	External Increment Option Added To For Iterator Block

	Performance Improvements
	Major Bug Fixes
	Upgrading from an Earlier Release
	Known Software and Documentation Problems
	Changing a Subsystem Port Number Can Corrupt a Model
	Model File Names Limited to 1280 Characters
	Compiling Ada S-Functions with GNAT Ada Compiler
	Specifying Include Directories for Building Ada S-Functions
	Deadzone Block Result Differs in Code Generation


	Simulink 5.0.1 Release Notes
	Major Bug Fixes
	Upgrading from an Earlier Release
	Backwards Compatibility of Tunable Parameters for Unified Fixed-Point Blocks


	Simulink 5.0 Release Notes
	New Features
	Block Enhancements
	Simulation Enhancements
	Modeling Enhancements

	Major Bug Fixes
	Platform Limitations for HP and IBM
	Upgrading from an Earlier Release
	BlockInstanceData Function Deprecated


	Simulink 4.1 Release Notes
	New Features
	Simulink Editor
	Modeling Enhancements
	Simulink Debugger
	Block Library

	Bug Fixes
	Upgrading from an Earlier Release
	Running Simulink 4.1 Models in Simulink 4.0
	Simulink Block Library Reorganization
	Direct Feedthrough Compensation Deprecated
	S-Functions Sorted Like Built-In Blocks
	Added Latched Triggered Subsystems
	Self-Triggering Subsystems Are No Longer Allowed
	Improved Invalid Model Configuration Diagnostics


	Simulink 4.0 Release Notes
	New Features
	Simulink Editor
	Modeling Enhancements
	Simulink Debugger
	Block Library
	SB2SL

	Upgrading from an Earlier Release
	Port Name Property



